Math 121 Assignment 6

Due Friday March 4

1. If $100 \mathrm{~N} . \mathrm{cm}$ of work must be done to compress an elastic spring to 3 cm shorter than its normal length, how much work must be done to compress it 1 cm further? Recall that by Hooke's law, the force required to compress an elastic spring to x units shorter than its natural length is proportional to x.
2. A bucket is raised vertically from ground level at a constant speed of $2 \mathrm{~m} / \mathrm{min}$ by a winch. If the bucket weighs 1 kg and contains 15 kg of water when it starts up but loses water by leakage at the rate of $1 \mathrm{~kg} / \mathrm{min}$ thereafter, how much work must be done by the winch to raise the bucket to a height of 10 m ?
3. For each of the following equations, find a function $y(x)$ that obeys it.
(a) $y(x)=3+\int_{0}^{x} e^{-y(t)} d t$.
(b) $x^{2} y^{\prime}+y=x^{2} e^{1 / x}, y(1)=3 e$.
4. Find the equation of a curve that passes through the point $(2,4)$ and has slope $3 y /(x-1)$ at any point on it.
5. The initial balance in the account was $\$ 1000$. Interest is paid continuously into the account at a rate of 10% per annum, compounded continuously. The account is also being continuously depleted by taxes at the rate of $y^{2} 10^{-6}$ dollars per year, where $y=y(t)$ is the balance in the account after t years. How large can the account grow? How long will it take the account to grow to half its balance?
6. Identify the parametric curves

$$
\left\{\begin{array} { l }
{ x = \operatorname { c o s h } t } \\
{ y = \operatorname { s i n h } ^ { 2 } t }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
x=\cos t+\sin t \\
y=\cos t-\sin t
\end{array}\right.\right.
$$

7. For the following two examples, determine the points where the given parametric curves have horizontal and vertical tangents.

$$
\left\{\begin{array} { l }
{ x = \frac { 4 } { 1 + t ^ { 2 } } } \\
{ y = t ^ { 3 } - 3 t }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
x & =t^{3}-3 t \\
y & =t^{3}-12 t
\end{array}\right.\right.
$$

8. Find the length of the curve $x=e^{t}-t, y=4 e^{t / 2}$ from $t=0$ to $t=2$.
9. Sketch the polar graph of the equation $r=1+2 \cos 2 \theta$ and find the area of one of the two smaller loops.
10. Find the area of the region inside the cardioid $r=1+\cos \theta$ and to the left of the line $x=1 / 4$.
11. Show that a plane that is not parallel to the axis of a circular cylinder intersects the cylinder in an ellipse.
12. At what points do the curves $r^{2}=2 \sin 2 \theta$ and $r=2 \cos \theta$ intersect? At what angle do the curves intersect at each of these points?
13. A tractrix is a curve in the first quadrant of the (x, y) plane, starting from the point $(L, 0)$, and having the property that if the tangent line to the curve at P meets the y-axis at Q, then the length of $P Q$ is the constant L. (For example, think of a trailer of length L attached to a tractor which is sitting at the origin. The rear end P of the trailer was originally lying at $(L, 0)$. As the tractor moves away along the y-axis, the path traced out by P is a tractrix.) Find the equation of the tractrix.
