Math 121 Assignment 3

Due Friday January 29

1. Evaluate the following integrals:
(a) $\int \frac{\ln (\ln x)}{x} d x$
(b) $\int(\arcsin (x))^{2} d x$
(c) $\int x e^{x} \cos x d x$
(d) $\int \frac{x^{3}+1}{12+7 x+x^{2}} d x$
(e) $\int \frac{d t}{(t-1)\left(t^{2}-1\right)^{2}}$
(f) $\int \frac{d x}{e^{2 x}-4 e^{x}+4}$
(g) $\int \frac{d x}{x^{2}\left(x^{2}-1\right)^{\frac{3}{2}}}$
(h) $\int \frac{d x}{x^{2}\left(x^{2}+1\right)^{\frac{3}{2}}}$
(i) $\int \frac{d \theta}{1+\cos \theta+\sin \theta}$.
2. Use the method of undetermined coefficients to evaluate the integral $\int x^{2}(\ln x)^{4} d x$.
3. Write down the form that the partial fraction expansion of

$$
\frac{x^{5}+x^{3}+1}{(x-1)\left(x^{2}-1\right)\left(x^{3}-1\right)}
$$

will take. Do not evaluate the constants.
4. Consider the integral $I=\int e^{-x^{2}} d x$. It is known (and you can use this fact without proof) that if it were possible to evaluate the integral I using elementary functions (these are functions that can be written as compositions of functions that are polynomial, trigonometric or exponential, or their inverses), it would take the form

$$
I=P(x) e^{-x^{2}}+C
$$

where P is a polynomial. Show that such a polynomial P does not exist. This is called a proof by contradiction, and it shows that an elementary function (such as $e^{-x^{2}}$) may very well possess nonelementary anti-derivatives.
5. Obtain reduction formulae for

$$
I_{n}=\int_{0}^{\frac{\pi}{2}} x^{n} \sin x d x \quad \text { and } \quad J_{n}=\int \sin ^{n} x d x
$$

and use them to evaluate I_{6} and J_{7}.

