

Figure 1: 1

Math 121: Midterm 2 solutions

1. $x=t^{3}-4 t, y=t^{2},-2 \leq t \leq 2$.

$$
\begin{aligned}
\text { Area } & =\int_{-2}^{2} t^{2}\left(3 t^{2}-4\right) d t \\
& =2 \int_{0}^{2}\left(3 t^{4}-4 t^{2}\right) d t \\
& =\left.2\left(3 t^{5} / 5-4 t^{3} / 3\right)\right|_{0} ^{2}=\frac{256}{15} \text { sq.units. }
\end{aligned}
$$

2. We have

$$
x^{\prime}(t)=0.12-\frac{10 x(t)}{1000+2 t} .
$$

This is a linear first order ODE with initial condition $x(0)=50$.
3. The series can be written as

$$
\begin{aligned}
& \sum_{n=1}^{\infty}(-1)^{n} \frac{n^{100} 2^{n}}{\sqrt{n!}} \\
\lim \frac{a_{n+1}}{a_{n}} & =\frac{(n+1)^{100} 2^{n+1}}{\sqrt{(n+1)!}} / \frac{n^{100} 2^{n}}{\sqrt{n!}} \\
& =\lim 2\left(\frac{n+1}{n}\right)^{100} \frac{1}{\sqrt{n+1}} \\
& =0 .
\end{aligned}
$$

So the series converges absolutely.
4. Let $a_{1}=1$ and $a_{n+1}=\sqrt{1+2 a_{n}}$ for $n=1,2,3, \ldots$. Then we have $a_{2}=\sqrt{3}>1$. If $a_{k+1}>a_{k}$ for some k, then

$$
a_{k+2}=\sqrt{1+2 a_{k+1}}>\sqrt{1+2 a_{k}}=a_{k+1}
$$

Thus, $\left\{a_{n}\right\}$ is increasing by induction. Let $\lim a_{n}=a$. Then

$$
\begin{gathered}
a=\sqrt{1+2 a} \\
a^{2}-2 a-1=0 \\
a=\frac{2 \pm \sqrt{8}}{2}
\end{gathered}
$$

Since $a>a_{1}=1$, we have $\lim a_{n}=\frac{2+\sqrt{8}}{2}$.
5. (a) True. With any $\epsilon>0$, there exists N, such that when $n>N$, we have $\sqrt{a_{n}}<$ $\epsilon<1$. Since we must have $a_{n}<\sqrt{a_{n}}$, the series $\sum_{n} a_{n}$ is convergent by comparison.
(b) False.

