Math 121: Homework 7 solutions

1. (a)

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n^{2}-2 \sqrt{n}+1}{1-n-3 n^{2}}=\lim _{n \rightarrow \infty} \frac{1-\frac{2}{n \sqrt{n}}+\frac{1}{n^{2}}}{\frac{1}{n^{2}}-\frac{1}{n}-3}=-\frac{1}{3} .
$$

(b)

$$
\lim _{n \rightarrow \infty}\left(n-\sqrt{n^{2}-4 n}\right)=\lim \frac{n^{2}-\left(n^{2}-4 n\right)}{n+\sqrt{n^{2}-4 n}}=\lim \frac{4 n}{n+\sqrt{n^{2}-4 n}}=\lim \frac{4}{1+\sqrt{1-4 / n}}=2
$$

(c)

$$
a_{n}=\frac{(n!)^{2}}{(2 n)!}=\frac{(1 \cdot 2 \cdot 3 \ldots . n)(1 \cdot 2 \cdot 3 \ldots . n)}{1 \cdot 2 \cdot 3 \ldots n \cdot(n+1) . .(2 n)}=\frac{1}{n+1} \frac{2}{n+2} \ldots \frac{n}{n+n} \leq(1 / 2)^{n}
$$

So $\lim _{n \rightarrow \infty} a_{n}=0$.
2. Let $a_{1}=3$ and $a_{n+1}=\sqrt{15+2 a_{n}}$ for $n=1,2,3, \ldots$. Then we have $a_{2}=\sqrt{21}>3$. If $a_{k+1}>a_{k}$ for some k, then

$$
a_{k+2}=\sqrt{15+2 a_{k+1}}>\sqrt{15+2 a_{k}}=a_{k+1} .
$$

Thus, $\left\{a_{n}\right\}$ is increasing by induction. Observe that $a_{1}<5$ and $a_{2}<5$. If $a_{k}<5$ then

$$
a_{k+1}=\sqrt{2 a_{k}+15}<\sqrt{15+2(5)}=5 .
$$

Therefore, $a_{n}<5$ for all n, by induction. Since $\left\{a_{n}\right\}$ is increasing and bounded above, it converges. Let $\lim a_{n}=a$. Then

$$
\begin{gathered}
a=\sqrt{15+2 a} \\
a^{2}-2 a-15=0 \\
a=-3, \quad a=5
\end{gathered}
$$

Since $a>a_{1}$, we have $\lim a_{n}=5$.
3. (a) Let

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)}=\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots
$$

Since

$$
\frac{1}{(2 n-1)(2 n+1)}=\frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right),
$$

the partial sum is

$$
\begin{aligned}
s_{n} & =\frac{1}{2}(1-1 / 3)+\frac{1}{2}(1 / 3-1 / 5)+\ldots . .+\frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right) \\
& =\frac{1}{2}\left(1-\frac{1}{2 n+1}\right)
\end{aligned}
$$

Hence,

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)}=\frac{1}{2}
$$

(b) Since $1+2+3+\ldots+n=\frac{n(n+1)}{2}$, the given series is $\sum_{n=1}^{\infty}=\frac{2}{n(n+1)}$, which converges to 2 .
4. The total distance is

$$
\begin{aligned}
d & =2+2\left[2 * 3 / 4+2 *(3 / 4)^{2}+\ldots\right] \\
& =2+2 * 3 / 2 *\left[1+3 / 4+(3 / 4)^{2}+\ldots .\right] \\
& =2+3 /(1-3 / 4)=14
\end{aligned}
$$

5. (a) False. Let $a_{n}=\frac{1}{n}$ and $b_{n}=\frac{1}{n+1}$. Then $\sum=\infty$ and $0<b_{n} \leq 1 / 2$. But $\sum a_{n} b_{n}=\frac{1}{n(n+1)}$ which converges.
(b) True. Since $\sum a_{n}$ converges, therefore $\lim a_{n}=0$. Thus there exists N such that $0<a_{n} \leq 1$ for $n \geq N$. Thus $0<a_{n}^{2} \leq a_{n}$ for $n \geq N$. If $S_{n}=\sum_{k=N}^{n} a_{k}^{2}$ and $s_{n}=\sum_{k=N}^{n} a_{k}$, then $\left\{S_{n}\right\}$ is increasing and bounded above:

$$
S_{n} \leq s_{n} \leq \sum_{k=1}^{\infty} a_{k}<\infty
$$

Thus, the statement is true.
(c) False. $a_{n}=\frac{(-1)^{n}}{n}$ is a counterexample.
(d) True. Because $\left|(-1)^{n} a_{n}\right|=\left|a_{n}\right|$.
6. (a) We apply the ratio test, we have

$$
\rho=\lim \frac{2^{2 n+2}((n+1)!)^{2}}{(2 n+2)!} \frac{(2 n)!}{2^{2 n}(n!)^{2}}=1
$$

Thus the ratio test provides no information. However

$$
\begin{aligned}
\frac{2^{2 n}(n!)^{2}}{(2 n)!} & =\frac{[2 n(2 n-2) . .(6)(4)(2)]^{2}}{2 n(2 n-1)(2 n-2) \ldots(3) 2)(1)} \\
& =\frac{2 n}{2 n-1} \frac{2 n-2}{2 n-3} \cdots \cdot \frac{4}{3} \frac{2}{1}>1 .
\end{aligned}
$$

Since the terms exceed 1 , the series diverges to infinity.
(b) Since

$$
\rho=\lim _{n \rightarrow \infty}\left[(n /(n+1))^{n^{2}}\right]^{1 / n}=\lim \frac{1}{(1+1 / n)^{n}}=\frac{1}{e}<1 .
$$

The sum converges.
(c) The sum converges by the integral test:

$$
\int_{a}^{\infty} \frac{d t}{t \ln (t)(\ln \ln (t))^{2}}=\int_{\ln \ln (a)}^{\infty} \frac{d u}{u^{2}}<\infty
$$

if $\ln \ln (a)>0$.
7. (a) Apply the ratio test. We have

$$
\rho=\lim \left|\frac{(2 x+3)^{n+1}}{(n+1)^{1 / 3} 4^{n+1}} \frac{n^{1 / 3} 4^{n}}{(2 x+3)^{n}}\right|=\frac{|2 x+3|}{4} .
$$

The series converges absolutely if $\left|x+\frac{3}{2}\right|<2$, that is, if $-7 / 2<x<1 / 2$. By the alternating series test it converges conditionally at $x=-\frac{7}{2}$. It diverges elsewhere.
(b) Apply the ratio test

$$
\rho=\lim \left|\frac{1}{n+1}\left(1+\frac{1}{1+x}\right)^{n+1} \frac{n}{1}\left(1+\frac{1}{x}\right)^{-n}\right|=\left|1+\frac{1}{x}\right|=1 .
$$

if and only if $|x+1|<|x|$, that is, $-2<\frac{1}{x}<0 . x<-\frac{1}{2}$. If $x=-\frac{1}{2}$, then $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$, which converges conditionally. Thus, the series converges absolutely if $x<-\frac{1}{2}$, converges conditionally if $x=-\frac{1}{2}$ and diverges elsewhere. It is undefined at $x=0$.
(c) Apply the ratio test, we obtain

$$
\rho=\lim |x| \frac{(2 n+2)(2 n+1)}{4(n+1)^{2}}=|x| .
$$

Thus, $\sum a_{n} x^{n}$ converges absolutely if $-1<x<1$, and diverges if $x>1$ or $x<-1$. In exercise 36 of Section 9.3 it was shown that $a_{n} \geq \frac{1}{2 n}$, so the given series definitely diverges at $x=1$ and may at most converge conditionally at $x=-1$. To see whether it does converge at -1 , we write

$$
\begin{aligned}
a_{n} & =\frac{(2 n)!}{2^{2 n}(n!)^{2}}=\frac{1 \times 2 \times 3 \times 4 \ldots \times 2 n}{(2 \times 4 \times 8 \ldots \times 2 n)^{2}} \\
& =\frac{1 \times 3 \times 5 \ldots \times(2 n-1)}{2 \times 4 \times 6 \ldots \times(2 n-2) \times 2 n} \\
& =\frac{1}{2} \frac{3}{4} \cdots \frac{2 n-3}{2 n-2} \frac{2 n-1}{2 n} \\
& =(1-1 / 2)(1-/ 1 / 4) \ldots(1-1 /(2 n-2))(1-1 / 2 n)
\end{aligned}
$$

It is evident that a_{n} decreases as n increases. To see whether $\lim a_{n}=0$, take logarithms and use the inequality $\ln (x+1) \leq x$:

$$
\begin{aligned}
\ln \left(a_{n}\right) & =\ln (1-1 / 2)+\ln (1-1 / 4)+\ldots .+\ln (1-1 / 2 n) \\
& \leq-\frac{1}{2}-\frac{1}{4}-\ldots-\frac{1}{2 n} \\
& =-\frac{1}{2}\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right)
\end{aligned}
$$

as $n \rightarrow \infty$. Thus, $\lim a_{n}=0$, and the given series converges conditionally at $x=-1$ by the alternating series test.

