Math 121: Homework 7 solutions
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2. Letay =3and a,.1 = /15+2a, forn =1,2,3,.... Then we have a, = /21 > 3. If
ary1 > ay for some k, then

Ao = /15 + 2a5 1 > /15 + 2a; = a5 ;.

Thus, {a,} is increasing by induction. Observe that a; < 5and a, < 5. If gy < 5
then

eiq = \/2a + 15 < /154 2(5) = 5.

Therefore, a, < 5 for all n, by induction. Since {a,} is increasing and bounded
above, it converges. Let lima,, = 4. Then

a=+15+42a.
a* —2a—15=0.
a=-3, a=>5.
Since a > a1, we have lima, = 5.
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Hence,
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(b) Since 1 +2+3+..+n = n(n2+1), the given series is ) .7 | = ﬁ, which

converges to 2.
4. The total distance is
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242%3/2%[14+3/4+ (3/4)% + ...
2+43/(1—3/4) = 14.

5. (a) False. Leta, = %and b, = nlﬂ Then }, = coand 0 < b, < 1/2. But

Y a,b, = m which converges.

(b) True. Since ) a, converges, therefore lima, = 0. Thus there exists N such that
0<ay, <lforn>N. Thus0 < a < a,forn > N. If S, = Y}_ya? and
Sn = Y p_n Ok, then {S, } is increasing and bounded above:

o0
Sn < su< ) ax < oo,
k=1

Thus, the statement is true.
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(d) True. Because |(—1)"a,| = |ax|.

(c) False. a, = is a counterexample.

6. (a) We apply the ratio test, we have
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Thus the ratio test provides no information. However
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Since the terms exceed 1, the series diverges to infinity.
(b) Since
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The sum converges.
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The sum converges by the integral test:
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ifInln(a) > 0.
Apply the ratio test. We have
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The series converges absolutely if |x + 3| < 2, that is, if —7/2 < x < 1/2.
By the alternating series test it converges conditionally at x = —%. It diverges
elsewhere.

Apply the ratio test

p=lim|— (1 )R ) = i =1

if and only if [x + 1| < |x|, thatis, =2 < 1 < 0. x < —1. If x = —], then
Yoq10n = Yoq (_nl I which converges conditionally. Thus, the series con-
verges absolutely if x < —%, converges conditionally if x = —3 and diverges

elsewhere. It is undefined at x = 0.
Apply the ratio test, we obtain

(2n+2)2n+1)

inpiz
Thus, ) a,x" converges absolutely if —1 < x < 1, and diverges if x > 1 or
x < —1. In exercise 36 of Section 9.3 it was shown that a,, > %, so the given
series definitely diverges at x = 1 and may at most converge conditionally at
x = —1. To see whether it does converge at —1, we write
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It is evident that a,, decreases as n increases. To see whether lima,, = 0, take
logarithms and use the inequality In(x + 1) < x:

In(ay) = In(1—1/2)+In(1—1/4)+ ... +1In(1—1/2n)

o = lim |x|
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as n — oo. Thus, lima, = 0, and the given series converges conditionally at
x = —1 by the alternating series test.



