Math 121: Homework 6 solutions

1. The spring force is $F(x)=k x$, where x is the amount of compression. The work done to compress the spring 3 cm is

$$
100 N . c m=W=\int_{0}^{3} k x d x=\left.\frac{1}{2} k x^{2}\right|_{0} ^{3}=\frac{9}{2} k
$$

Hence, $k=\frac{200}{9} \mathrm{~N} / \mathrm{cm}$. The work necessary to compress the spring a further 1 cm is

$$
W=\int_{3}^{4} k x d x=\left.\left(\frac{200}{9}\right) \frac{1}{2} x^{2}\right|_{3} ^{4}=\frac{700}{9} N . c m .
$$

2. Let the time required to raise the bucket to height $h \mathrm{~m}$ be t minutes. Given that the velocity is $2 \mathrm{~m} / \mathrm{min}$, then $t=\frac{h}{2}$. The weight of the bucket at time t is

$$
16 \mathrm{~kg}-(1 \mathrm{~kg} / \min)(\mathrm{tmin})=16-\frac{h}{2} \mathrm{~kg}
$$

Therefore, the work done required to move the bucket to a height of 10 m is

$$
\begin{aligned}
W & =g \int_{0}^{10}\left(16-\frac{h}{2}\right) d h \\
& =\left.9.8\left(16 h-\frac{h^{2}}{4}\right)\right|_{0} ^{10}=1323 \mathrm{~N} . \mathrm{m}
\end{aligned}
$$

3. (a)

$$
y(x)=3+\int_{0}^{x} e^{-y} d y
$$

so we have $y(0)=3$.

$$
\begin{gathered}
\frac{d y}{d x}=e^{-y} \\
e^{y}=x+C \\
y=\ln (x+C)
\end{gathered}
$$

Based on the initial condition, $C=e^{3}$. So $y=\ln \left(x+e^{3}\right)$.
(b)

$$
\begin{gathered}
x^{2} y^{\prime}+y=x^{2} e^{1 / x}, \quad y(1)=3 e \\
y^{\prime}+\frac{1}{x^{2}} y=e^{1 / x} \\
\mu=\int \frac{1}{x^{2}} d x=-\frac{1}{x^{\prime}} \\
\frac{d}{d x}\left(e^{-1 / x} y\right)=e^{-1 / x}\left(y^{\prime}+\frac{1}{x^{2}} y\right)=1 \\
e^{-1 / x} y=\int 1 d x=x+C
\end{gathered}
$$

since $y(1)=3 e$, so $3=1+C, C=2$.

$$
y=(x+2) e^{1 / x}
$$

4.

$$
\begin{gathered}
\frac{d y}{d x}=\frac{3 y}{x-1} \\
\int \frac{d y}{y}=3 \frac{d x}{x-1} \\
\ln |y|=\ln |x-1|^{3}+\ln |C| \\
y=C(x-1)^{3} .
\end{gathered}
$$

Since $y=4$ when $x=2$, we have $4=C(2-1)^{3}=C$, so the equation of the curve is $y=4(x-1)^{3}$.
5. The balance in the account after t years is $y(t)$ and $y(0)=1000$. The balance must satisfy

$$
\begin{aligned}
\frac{d y}{d t} & =0.1 y-\frac{y^{2}}{1000000} \\
\frac{d y}{d t} & =\frac{10^{5} y-y^{2}}{10^{6}} \\
\int \frac{d y}{10^{5} y-y^{2}} & =\int \frac{d t}{10^{6}} \\
\frac{1}{10^{5}} \int\left(\frac{1}{y}+\frac{1}{10^{5}-y}\right) d y & =\frac{t}{10^{6}}-\frac{C}{10^{5}} \\
\ln |y|-\ln \left|10^{5}-y\right| & =\frac{t}{10}-C \\
\frac{10^{5}-y}{y} & =e^{C-(t / 10)} \\
y & =\frac{10^{5}}{e^{C-(t / 10)}+1} .
\end{aligned}
$$

Since $y(0)=1000$, we have

$$
1000=y(0)=\frac{10^{5}}{e^{C}+1}
$$

so $C=\ln 99$, and

$$
y=\frac{10^{5}}{99 e^{-t / 10}+1}
$$

The balance after 1 year is

$$
y=\frac{10^{5}}{99 e^{-1 / 10}+1} \approx 1104.01
$$

As $t \rightarrow \infty$, the balance can grow to

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty} \frac{10^{5}}{e^{4.6-0.1 t}+1}=100000
$$

For the account to grow to 50000, t must satisfy

$$
50000=y(t)=\frac{100000}{99 e^{-t / 10}+1}
$$

so $t=10 \ln 99 \approx 46$ years.
6.

$$
x=\cosh t, \quad y=\sinh ^{2} t
$$

Parabola $x^{2}-y=1$ or $y=x^{2}-1$, traversed left to right.

$$
x=\cos t+\sin t, \quad y=\cos t-\sin t
$$

The circle $x^{2}+y^{2}=2$, traversed clockwise, starting and ending at $(1,1)$.
7. $x=\frac{4}{1+t^{2}}, y=t^{3}-3 t$.

$$
\frac{d x}{d t}=-\frac{8 t}{\left(1+t^{2}\right)^{2}}, \quad \frac{d y}{d t}=3\left(t^{2}-1\right)
$$

Horizontal tangent at $t= \pm 1$, i.e. at $(2, \pm 2)$. Vertical tangent at $t=0$, i.e. at $(4,0)$. Self-intersection at $t= \pm \sqrt{3}$, i.e. at $(1,0)$.

$$
\begin{gathered}
x=t^{3}-3 t, \quad y=t^{3}-12 t \\
\frac{d x}{d t}=3\left(t^{2}-1\right), \quad \frac{d y}{d t}=3\left(t^{2}-4\right)
\end{gathered}
$$

Horizontal tangent at $t= \pm 2$, i.e. at $(2,-16)$ and $(-2,16)$. Vertical tangent at $t= \pm 1$, i.e. at $(2,11)$ and $(-2,-11)$. Slope $\frac{d y}{d x}=\frac{t^{2}-4}{t^{2}-1}$, positive if $|t|>2$ or $|t|<1$; negative if $1<|t|<2$. Slope $\rightarrow 1$ as $t \rightarrow \pm \infty$.
8.

$$
\begin{aligned}
L & =\int_{0}^{2} \sqrt{\left(e^{t}-1\right)^{2}+4 e^{t}} d t \\
& =\int_{0}^{2} \sqrt{\left(e^{t}+1\right)^{2}} d t=\int_{0}^{2}\left(e^{t}+1\right) d t \\
& =\left.\left(e^{t}+1\right)\right|_{0} ^{2}=e^{2}+1 \text { units. }
\end{aligned}
$$

9. The area of a smaller loop:

$$
\begin{aligned}
A & =2 \times \frac{1}{2} \int_{\pi / 3}^{\pi / 2}(1+2 \cos (2 \theta))^{2} d \theta \\
& =\int_{\pi / 3}^{\pi / 2}[1+4 \cos (2 \theta)+2(1+\cos (4 \theta))] d \theta \\
& =\left.\left(3 \theta+2 \sin (2 \theta)+\frac{1}{2} \sin (4 \theta)\right)\right|_{\pi / 3} ^{\pi / 2} \\
& =\frac{\pi}{2}-\frac{3 \sqrt{3}}{4} \text { sq.units. }
\end{aligned}
$$

Figure 1: 9
10. $r \cos \theta=x=1 / 4$ and $r=1+\cos \theta$ intersect where

$$
\begin{gathered}
1+\cos \theta=\frac{1}{4 \cos \theta} \\
4 \cos ^{2} \theta+4 \cos \theta-1=0 \\
\cos \theta=\frac{ \pm \sqrt{2}-1}{2} .
\end{gathered}
$$

Only $(\sqrt{2}-1) / 2$ is between -1 and 1 , so is a possible value of $\cos \theta$. Let $\theta_{0}=$ $\cos ^{-1} \frac{\sqrt{2}-1}{2}$. Then

$$
\sin \theta_{0}=\sqrt{1-\left(\frac{\sqrt{2}-1}{2}\right)^{2}}=\frac{\sqrt{1+2 \sqrt{2}}}{2}
$$

By symmetry, the area inside $r=1+\cos \theta$ to the left of the line $x=1 / 4$ is

$$
\begin{aligned}
A & =2 \times \frac{1}{2} \int_{\theta_{0}}^{\pi}\left(1+2 \cos \theta+\frac{1+\cos (2 \theta)}{2}\right) d \theta+\cos \theta_{0} \sin \theta_{0} \\
& =\frac{3}{2}\left(\pi-\theta_{0}\right)+\left.\left(2 \sin \theta+\frac{1}{4} \sin (2 \theta)\right)\right|_{\theta_{0}} ^{\pi}+(\sqrt{2}-1) \sqrt{1+2 \sqrt{2}} / 4 \\
& =\frac{3}{2}\left(\pi-\cos ^{-1} \frac{\sqrt{2}-1}{2}\right)+\sqrt{1+2 \sqrt{2}}\left(\frac{\sqrt{2}-9}{8}\right) \text { sq.units. }
\end{aligned}
$$

11. Let S_{1} and S_{2} be two spheres inscribed in the cylinder, one on each side of the plane that intersects the cylinder in the curve C that we are trying to s show in an ellipse. Let the spheres be tangent to the cylinder around the circles C_{1} and C_{2}, and suppose they are also tangent to the plane at the points F_{1} and F_{2}, respectively, as shown in the figure.

Figure 2: 11
Let P be any points on C. Let $A_{1} A_{2}$ be the line through P that lies on the cylinder, with A_{1} on C_{1} and A_{2} on C_{2}. Then $P F_{1}=P A_{1}$ because both lengths are of tangents drawn to the sphere S_{1} from the same exterior point P. Similarly, $P F_{2}=P A_{2}$. Hence,

$$
P F_{1}+P F_{2}=P A_{1}+P A_{2}=A_{1} A_{2}
$$

which is constant, the distance between the centers of the two spheres. Thus C must be an ellipse, with foci at F_{1} and F_{2}.
12. The two curves $r^{2}=2 \sin (2 \theta)$ and $r=2 \cos \theta$ intersects where

$$
\begin{aligned}
2 \sin (2 \theta) & =4 \cos ^{2}(\theta) \\
4 \sin \theta \cos \theta & =4 \cos ^{2} \theta \\
(\sin \theta-\cos \theta) \cos \theta & =0 \\
\sin \theta & =\cos \theta \operatorname{or} \cos \theta=0
\end{aligned}
$$

i.e. at $P_{1}=[\sqrt{2}, \pi / 4]$ and $P_{2}=(0,0)$.

For $r^{2}=2 \sin \theta$ we have $2 r \frac{d r}{d \theta}=4 \cos (2 \theta)$. At P_{1} we have $r=\sqrt{2}$ and $d r / d \theta=0$. Thus the angle ϕ between the curve and the radial line $\theta=\pi / 4$ is $\phi=\pi / 2$. For $r=2 \cos \theta$ we have $d r / d \theta=-2 \sin \theta$, so the angle between this curve and the radial line $\theta=\pi / 4$ satisfies $\tan \phi=\left.\frac{r}{d r / d \theta}\right|_{\theta=\pi / 4}=-1$ and $\phi=3 \pi / 4$. The two curves

Figure 3: 12
intersect at P_{1} at angle $\frac{3 \pi}{4}-\frac{\pi}{2}=\frac{\pi}{4}$. The Figure shows that at the origin, P_{2}, the circle meets the lemniscate twice, at angle 0 and $\pi / 2$.
13. If $Q=(0, Y)$, then the slope of $P Q$ is

$$
\frac{y-Y}{x-0}=f^{\prime}(x)=\frac{d y}{d x}
$$

Since $|P Q|=L$, we have $(y-Y)^{2}=L^{2}-x^{2}$. Since the slope $d y / d x$ is negative at P, $d y / d x=-\sqrt{L^{2}-x^{2}} / x$. Thus,

$$
y=-\int \frac{\sqrt{L^{2}-x^{2}}}{x} d x=L \ln \left(\frac{L+\sqrt{L^{2}-x^{2}}}{x}\right)-\sqrt{L^{2}-x^{2}}+C .
$$

Since $y=0$ when $x=L$, we have $C=0$ and the equation of the tractrix ix

$$
y=L \ln \left(\frac{L+\sqrt{L^{2}-x^{2}}}{x}\right)-\sqrt{L^{2}-x^{2}}
$$

Note that the first term can be written in an alternate way:

$$
y=L \ln \left(\frac{x}{L-\sqrt{L^{2}-x^{2}}}\right)-\sqrt{L^{2}-x^{2}}
$$

Figure 4: 13

