
Math 121: Homework 4 solutions

1. (a) ∫ 1

0

dx√
x(1− x)

= 2
∫ 1/2

0

dx√
1/4− (x− 1/2)2

= 2 lim
c→0+

∫ 1/2

c

dx√
1/4− (x− 1/2)2

= 2 lim
c→0+

sin−1(2x− 1)|1/2
c = π.

The integral converges.

(b) ∫ π/2

0
sec xdx = lim

C→(π/2)−
ln | sec x + tan x|C0

= lim
C→(π/2)−

ln | sec C + tan C| = ∞.

The integral diverges to infinity.

2. (a) Since 0 ≤ 1− cos
√

x = 2 sin2(
√

x
2 ) ≤ 2(

√
x

2 )2 = x
2 , for x ≥ 0, therefore

∫ π2

0

dx
1− cos

√
x
≥ 2

∫ π2

0

dx
x

,

which diverges to infinity.

(b) Since sin x ≥ 2x
π on [0, π/2], we have

∫ ∞

0

| sin x|
x2 dx ≥

∫ π/2

0

sin x
x2 dx

≥ 2
π

∫ π/2

0

dx
x

= ∞.

The given integral diverges to infinity.

(c) Since ln x grows more slowly than any positive power of x, therefore we have
ln x ≤ kx1/4 for some constant k and every x ≥ 2. Thus,

1√
x ln x

≥ 1
kx3/4 ,

for x ≥ 2 and
∫ ∞

2
dx√
x ln x diverges to infinity by comparison with 1

k

∫ ∞
2

dx
x3/4 .
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3. (a) Let x = 1
t2 , dx = −2dt

t3 . ∫ ∞

1

dx
x2 +

√
x + 1

=
∫ 0

1

1

( 1
t2 )2 +

√
1
t2 + 1

(−2dt
t3 )

= 2
∫ 1

0

tdt
t4 + t3 + 1

.

(b) Let sin x = u2, 2udu = cos xdx =
√

1− u4dx.∫ π/2

0

dx√
sin x

= 2
∫ 1

0

udu
u
√

1− u4

= 2
∫ 1

0

du√
(1− u)(1 + u)(1 + u2)

= 4
∫ 1

0

vdv
v
√
(2− v2)(2− 2v2 + v4)

= 4
∫ 1

0

dv√
(2− v2)(2− 2v2 + v4)

with 1− u = v2, −du = 2vdv.

(c) One possibility: let x = sin θ and get

I =
∫ 1

−1

exdx√
1− x2

=
∫ π/2

−π/2
esin θdθ.

Another possibility:

I =
∫ 0

−1

exdx√
1− x2

+
∫ 1

0

exdx√
1− x2

= I1 + I2.

In I1 put 1 + x = u2, in I2 put 1− x = u2:

I1 =
∫ 1

0

2eu2−1udu
u
√

2− u2
= 2

∫ 1

0

eu2−1du√
2− u2

I2 =
∫ 1

0

2e1−u2
udu

u
√

2− u2
= 2

∫ 1

0

e1−u2
du√

2− u2

so I = 2
∫ 1

0
eu2−1+e1−u2
√

2−u2 du.

4. Let x = 1
t , dx = − dt

t2 . So we have

I =
∫ ∞

1
e−x2

dx =
∫ 0

1
e−(1/t)2

(− 1
t2 )dt =

∫ 1

0

e−1/t2

t2 dt.
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Observe that

lim
t→0+

e−1/t2

t2 = lim
t→0+

t−2

e1/t2

= lim
t→0+

−2t−3

e1/t2(−2t−3)

= lim
t→0+

1
e1/t2 = 0.

Hence

S2 =
1
3
(

1
2
)[0 + 4(4e−4) + e−1]

≈ 0.1101549

S4 =
1
3
(

1
4
)[0 + 4(16e−16) + 2(4e−4) + 4(

16
9

e−16/9) + e−1]

≈ 0.1430237

S8 =
1
3
(

1
8
)[0 + 4(64e−64 +

64
9

e−64/9 +
64
25

e−64/25 +

64
49

e−64/49) + 2(16e−16 + 4e−4 +
16
9

e−16/9) + e−1]

≈ 0.1393877.

Hence, I ≈ 0.14, accurate to 2 decimal places. These approximations do not con-
verge very quickly, because the fourth derivative of e−1/t2

has very large values for
some values of t near 0. In fact, higher and higher derivatives behave more and
more badly near 0, so higher order methods cannot be expected to work well either.

5. Let y = f (x). We are given that m1 is the midpoint of [x0, x1] where x1 − x0 = h. By
tangent line approximate in the subinterval [x0, x1],

f (x) ≈ f (m1) + f ′(m1)(x−m1).

The error in this approximation is

E(x) = f (x)− f (m1)− f ′(m1)(x−m1).

If f ′′(t) exists for all t in [x0, x1] and | f ′′(t)| ≤ K for some constant K, then by Theo-
rem 11 of section 4.9,

|E(x)| ≤ K
2
(x−m1)

2.

Hence,

| f (x)− f (m1)− f ′(m1)(x−m1)| ≤
K
2
(x−m1)

2.
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We integrate both sides of this inequality. Noting that x1−m1 = m1− x0 = h/2, we
obtain for the left side

|
∫ x1

x0

f (x)dx−
∫ x1

x0

f (m1)dx−
∫ x1

x0

f ′(m1)(x−m1)dx|

= |
∫ x1

x0

f (x)dx− f (m1)h− f ′(m1)
(x−m1)

2

2
|x1
x0 |

= |
∫ x1

x0

f (x)dx− f (m1)h|.

Integrating the right side, we get∫ x1

x0

K
2
(x−m1)

2dx =
K
2
(x−m1)

3

3
|x1
x0

=
K
6
(

h3

8
+

h3

8
) =

K
24

h3.

Hence,

| f x1
x0 f (x)dx− f (m1)h| = |

∫ x1

x0

[ f (x)− f (m1)− f ′(m1)(x−m1)]dx|

≤ K
24

h3.

I =
∫ 1

0
x2dx =

1
3

.

M1 = (1/2)2(1) = 1/4. The actual error is I −M1 = 1
3 −

1
4 = 1

12 . Since the second
derivative of x2 is 2, the error estimate is

|I −M1| ≤
2

24
(1− 0)2(12) =

1
12

.

Thus the constant in the error estimate for the Midpoint Rule cannot be improved,
no smaller constant will work for f (x) = x2.

6. (a) Since limt→∞ tx−1e−t/2 = 0, there exits T > 0 such that tx−1e−t/2 ≤ 1 if t ≥ T.
Thus,

0 ≤
∫ ∞

T
tx−1e−tdt ≤

∫ ∞

T
e−tdt = 2e−T/2

and
∫ ∞

T tx−1e−tdt converges by the comparison theorem. If x > 0, then

0 ≤
∫ T

0
tx−1e−tdt <

∫ T

0
tx−1dt

converges by Theorem 2(b). Thus the integral defining Γ(x) converges.
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(b)

Γ(x + 1) =
∫ ∞

0
txe−tdt = lim

c→0+,R→∞

∫ R

c
txe−tdt,

Let U = tx, dV = e−tdt, dU = xtx−1dx, and V = −e−t,

Γ(x + 1) = lim
c→0+,R→∞

(−txe−t|Rc + x
∫ R

c
tx−1e−tdt)

= 0 + x
∫ ∞

0
tx−1e−tdt = xΓ(x).

(c)

Γ(1) =
∫ ∞

0
e−tdt = 1 = 0!.

By (b), Γ(2) = 1Γ(1) = 1× 1 = 1 = 1!. In general, if Γ(k + 1) = k! for some
positive integer k, then Γ(k + 2) = (k + 1)Γ(k + 1) = (k + 1)k! = (k + 1)!.
Hence Γ(n + 1) = n! for all integers n ≥ 0, by induction.

(d)

Γ(
1
2
) =

∫ ∞

0
t−1/2e−tdt,

let t = x2, dt = 2xdx, so

Γ(
1
2
) =

∫ ∞

0

1
x

e−x2
2xdx = 2

∫ ∞

0
e−x2

dx =
√

π

Γ(
3
2
) =

1
2

Γ(
1
2
) =

1
2
√

π.
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