Math 121: Homework 4 solutions

1. (a)
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The integral converges.
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2. (a) Since 0 <1 —cos/x = 2sin2(‘/7§) < 2(‘4)2 = 3, for x > 0, therefore
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which diverges to infinity.

(b) Since sinx > 2;" on [0, r/2], we have
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The given integral diverges to infinity.
(c) Since In x grows more slowly than any positive power of x, therefore we have
Inx < kx4 for some constant k and every x > 2. Thus,
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3. (a) Letx = tlz, dx = i‘;t
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(b) Let sinx = 2, 2udu = cos xdx = /1 — utdx.
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with 1 —u = v?, —du = 2vdo.
(c) One possibility: let x = sin 6 and get

I= / o [ gy,
-1+/1—x2 —7/2
Another possibility:
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4. Letx = %, dx = —%. So we have
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Observe that
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Hence, I ~ 0.14, accurate to 2 decimal places. These approximations do not con-

verge very quickly, because the fourth derivative of e~/  has very large values for
some values of t near 0. In fact, higher and higher derivatives behave more and
more badly near 0, so higher order methods cannot be expected to work well either.

. Lety = f(x). We are given that m; is the midpoint of [x, x1] where x; — xo = h. By
tangent line approximate in the subinterval [xg, x1],

f(x) = f(m) + f'(m1)(x = mq).

The error in this approximation is

E(x) = f(x) = f(m1) — f'(m1)(x — my).

If f"(t) exists for all t in [xg, x1] and | f”(¢)| < K for some constant K, then by Theo-
rem 11 of section 4.9,
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Hence,
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|f(x) = f(my) — f'(m1)(x —my)| <
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We integrate both sides of this inequality. Noting that x; —m; = m; —xg = h/2, we
obtain for the left side
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Integrating the right side, we get

X
/1E(x—m1)2dx =
xg 2

0

Hence,

i = Flm)hl = | [ 1PG) = Flm) £ (m) e — o)

K3
ﬂh'

1 1
I = 2dx = =.
/Ox X 3

IA

M; = (1/2)%(1) = 1/4. The actual error is [ — M; = %—% = . Since the second
derivative of x2 is 2, the error estimate is
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Thus the constant in the error estimate for the Midpoint Rule cannot be improved,

no smaller constant will work for f(x) = x2.

(a) Since lim;_ o ¥ 1e~t/2 = (, there exits T > 0 such that t* e~ t/2 < 1ift > T.
Thus,
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and [ t*"le~!dt converges by the comparison theorem. If x > 0, then
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converges by Theorem 2(b). Thus the integral defining I'(x) converges.



(b) .
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LetU = t*,dV = e~ tdt, dU = xt* 1dx,and V = —e ¥,
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By (), T'(2) = 1I'(1) =1x1 =1 = 1! In general, if I'(k + 1) = k! for some
positive integer k, then I'(k+2) = (k+1)I'(k+1) = (k+1)k! = (k+ 1)L
Hence I'(n + 1) = n! for all integers n > 0, by induction.
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let t = x2, dt = 2xdx, so
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