Math 121: Homework 4 solutions

1. (a)

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{\sqrt{x(1-x)}} & =2 \int_{0}^{1 / 2} \frac{d x}{\sqrt{1 / 4-(x-1 / 2)^{2}}} \\
& =2 \lim _{c \rightarrow 0_{+}} \int_{c}^{1 / 2} \frac{d x}{\sqrt{1 / 4-(x-1 / 2)^{2}}} \\
& =\left.2 \lim _{c \rightarrow 0_{+}} \sin ^{-1}(2 x-1)\right|_{c} ^{1 / 2}=\pi
\end{aligned}
$$

The integral converges.
(b)

$$
\begin{aligned}
\int_{0}^{\pi / 2} \sec x d x & =\lim _{C \rightarrow(\pi / 2)_{-}} \ln |\sec x+\tan x|_{0}^{C} \\
& =\lim _{C \rightarrow(\pi / 2)_{-}} \ln |\sec C+\tan C|=\infty
\end{aligned}
$$

The integral diverges to infinity.
2. (a) Since $0 \leq 1-\cos \sqrt{x}=2 \sin ^{2}\left(\frac{\sqrt{x}}{2}\right) \leq 2\left(\frac{\sqrt{x}}{2}\right)^{2}=\frac{x}{2}$, for $x \geq 0$, therefore

$$
\int_{0}^{\pi^{2}} \frac{d x}{1-\cos \sqrt{x}} \geq 2 \int_{0}^{\pi^{2}} \frac{d x}{x}
$$

which diverges to infinity.
(b) Since $\sin x \geq \frac{2 x}{\pi}$ on $[0, \pi / 2]$, we have

$$
\begin{aligned}
\int_{0}^{\infty} \frac{|\sin x|}{x^{2}} d x & \geq \int_{0}^{\pi / 2} \frac{\sin x}{x^{2}} d x \\
& \geq \frac{2}{\pi} \int_{0}^{\pi / 2} \frac{d x}{x}=\infty
\end{aligned}
$$

The given integral diverges to infinity.
(c) Since $\ln x$ grows more slowly than any positive power of x, therefore we have $\ln x \leq k x^{1 / 4}$ for some constant k and every $x \geq 2$. Thus,

$$
\frac{1}{\sqrt{x} \ln x} \geq \frac{1}{k x^{3 / 4}}
$$

for $x \geq 2$ and $\int_{2}^{\infty} \frac{d x}{\sqrt{x} \ln x}$ diverges to infinity by comparison with $\frac{1}{k} \int_{2}^{\infty} \frac{d x}{x^{3 / 4}}$.
3. (a) Let $x=\frac{1}{t^{2}}, d x=-\frac{2 d t}{t^{3}}$.

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{d x}{x^{2}+\sqrt{x}+1} \\
= & \int_{1}^{0} \frac{1}{\left(\frac{1}{t^{2}}\right)^{2}+\sqrt{\frac{1}{t^{2}}}+1}\left(-\frac{2 d t}{t^{3}}\right) \\
= & 2 \int_{0}^{1} \frac{t d t}{t^{4}+t^{3}+1} .
\end{aligned}
$$

(b) Let $\sin x=u^{2}, 2 u d u=\cos x d x=\sqrt{1-u^{4}} d x$.

$$
\begin{aligned}
\int_{0}^{\pi / 2} \frac{d x}{\sqrt{\sin x}} & =2 \int_{0}^{1} \frac{u d u}{u \sqrt{1-u^{4}}} \\
& =2 \int_{0}^{1} \frac{d u}{\sqrt{(1-u)(1+u)\left(1+u^{2}\right)}} \\
& =4 \int_{0}^{1} \frac{v d v}{v \sqrt{\left(2-v^{2}\right)\left(2-2 v^{2}+v^{4}\right)}} \\
& =4 \int_{0}^{1} \frac{d v}{\sqrt{\left(2-v^{2}\right)\left(2-2 v^{2}+v^{4}\right)}}
\end{aligned}
$$

with $1-u=v^{2},-d u=2 v d v$.
(c) One possibility: let $x=\sin \theta$ and get

$$
I=\int_{-1}^{1} \frac{e^{x} d x}{\sqrt{1-x^{2}}}=\int_{-\pi / 2}^{\pi / 2} e^{\sin \theta} d \theta
$$

Another possibility:

$$
I=\int_{-1}^{0} \frac{e^{x} d x}{\sqrt{1-x^{2}}}+\int_{0}^{1} \frac{e^{x} d x}{\sqrt{1-x^{2}}}=I_{1}+I_{2}
$$

In I_{1} put $1+x=u^{2}$, in I_{2} put $1-x=u^{2}$:

$$
\begin{aligned}
& I_{1}=\int_{0}^{1} \frac{2 e^{u^{2}-1} u d u}{u \sqrt{2-u^{2}}}=2 \int_{0}^{1} \frac{e^{u^{2}-1} d u}{\sqrt{2-u^{2}}} \\
& I_{2}=\int_{0}^{1} \frac{2 e^{1-u^{2}} u d u}{u \sqrt{2-u^{2}}}=2 \int_{0}^{1} \frac{e^{1-u^{2}} d u}{\sqrt{2-u^{2}}}
\end{aligned}
$$

so $I=2 \int_{0}^{1} \frac{e^{u^{2}-1}+e^{1-u^{2}}}{\sqrt{2-u^{2}}} d u$.
4. Let $x=\frac{1}{t}, d x=-\frac{d t}{t^{2}}$. So we have

$$
I=\int_{1}^{\infty} e^{-x^{2}} d x=\int_{1}^{0} e^{-(1 / t)^{2}}\left(-\frac{1}{t^{2}}\right) d t=\int_{0}^{1} \frac{e^{-1 / t^{2}}}{t^{2}} d t
$$

Observe that

$$
\begin{aligned}
\lim _{t \rightarrow 0_{+}} \frac{e^{-1 / t^{2}}}{t^{2}} & =\lim _{t \rightarrow 0_{+}} \frac{t^{-2}}{e^{1 / t^{2}}} \\
& =\lim _{t \rightarrow 0_{+}} \frac{-2 t^{-3}}{e^{1 / t^{2}}\left(-2 t^{-3}\right)} \\
& =\lim _{t \rightarrow 0_{+}} \frac{1}{e^{1 / t^{2}}}=0
\end{aligned}
$$

Hence

$$
\begin{gathered}
S_{2}=\frac{1}{3}\left(\frac{1}{2}\right)\left[0+4\left(4 e^{-4}\right)+e^{-1}\right] \\
\approx 0.1101549 \\
S_{4}=\frac{1}{3}\left(\frac{1}{4}\right)\left[0+4\left(16 e^{-16}\right)+2\left(4 e^{-4}\right)+4\left(\frac{16}{9} e^{-16 / 9}\right)+e^{-1}\right] \\
\approx 0.1430237 \\
S_{8}=\frac{1}{3}\left(\frac{1}{8}\right)\left[0+4\left(64 e^{-64}+\frac{64}{9} e^{-64 / 9}+\frac{64}{25} e^{-64 / 25}+\right.\right. \\
\left.\left.\approx \frac{64}{49} e^{-64 / 49}\right)+2\left(16 e^{-16}+4 e^{-4}+\frac{16}{9} e^{-16 / 9}\right)+e^{-1}\right] \\
\approx 0.1393877 .
\end{gathered}
$$

Hence, $I \approx 0.14$, accurate to 2 decimal places. These approximations do not converge very quickly, because the fourth derivative of $e^{-1 / t^{2}}$ has very large values for some values of t near 0 . In fact, higher and higher derivatives behave more and more badly near 0 , so higher order methods cannot be expected to work well either.
5. Let $y=f(x)$. We are given that m_{1} is the midpoint of $\left[x_{0}, x_{1}\right]$ where $x_{1}-x_{0}=h$. By tangent line approximate in the subinterval $\left[x_{0}, x_{1}\right]$,

$$
f(x) \approx f\left(m_{1}\right)+f^{\prime}\left(m_{1}\right)\left(x-m_{1}\right)
$$

The error in this approximation is

$$
E(x)=f(x)-f\left(m_{1}\right)-f^{\prime}\left(m_{1}\right)\left(x-m_{1}\right)
$$

If $f^{\prime \prime}(t)$ exists for all t in $\left[x_{0}, x_{1}\right]$ and $\left|f^{\prime \prime}(t)\right| \leq K$ for some constant K, then by Theorem 11 of section 4.9,

$$
|E(x)| \leq \frac{K}{2}\left(x-m_{1}\right)^{2}
$$

Hence,

$$
\left|f(x)-f\left(m_{1}\right)-f^{\prime}\left(m_{1}\right)\left(x-m_{1}\right)\right| \leq \frac{K}{2}\left(x-m_{1}\right)^{2}
$$

We integrate both sides of this inequality. Noting that $x_{1}-m_{1}=m_{1}-x_{0}=h / 2$, we obtain for the left side

$$
\begin{aligned}
& \left|\int_{x_{0}}^{x_{1}} f(x) d x-\int_{x_{0}}^{x_{1}} f\left(m_{1}\right) d x-\int_{x_{0}}^{x_{1}} f^{\prime}\left(m_{1}\right)\left(x-m_{1}\right) d x\right| \\
= & \left.\left|\int_{x_{0}}^{x_{1}} f(x) d x-f\left(m_{1}\right) h-f^{\prime}\left(m_{1}\right) \frac{\left(x-m_{1}\right)^{2}}{2}\right| \begin{array}{l}
x_{0} \\
x_{0}
\end{array} \right\rvert\, \\
= & \left|\int_{x_{0}}^{x_{1}} f(x) d x-f\left(m_{1}\right) h\right| .
\end{aligned}
$$

Integrating the right side, we get

$$
\begin{aligned}
\int_{x_{0}}^{x_{1}} \frac{K}{2}\left(x-m_{1}\right)^{2} d x & =\left.\frac{K}{2} \frac{\left(x-m_{1}\right)^{3}}{3}\right|_{x_{0}} ^{x_{1}} \\
& =\frac{K}{6}\left(\frac{h^{3}}{8}+\frac{h^{3}}{8}\right)=\frac{K}{24} h^{3}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left|f_{x_{0}}^{x_{1}} f(x) d x-f\left(m_{1}\right) h\right|= & \left|\int_{x_{0}}^{x_{1}}\left[f(x)-f\left(m_{1}\right)-f^{\prime}\left(m_{1}\right)\left(x-m_{1}\right)\right] d x\right| \\
\leq & \frac{K}{24} h^{3} . \\
& I=\int_{0}^{1} x^{2} d x=\frac{1}{3} .
\end{aligned}
$$

$M_{1}=(1 / 2)^{2}(1)=1 / 4$. The actual error is $I-M_{1}=\frac{1}{3}-\frac{1}{4}=\frac{1}{12}$. Since the second derivative of x^{2} is 2 , the error estimate is

$$
\left|I-M_{1}\right| \leq \frac{2}{24}(1-0)^{2}\left(1^{2}\right)=\frac{1}{12}
$$

Thus the constant in the error estimate for the Midpoint Rule cannot be improved, no smaller constant will work for $f(x)=x^{2}$.
6. (a) Since $\lim _{t \rightarrow \infty} t^{x-1} e^{-t / 2}=0$, there exits $T>0$ such that $t^{x-1} e^{-t / 2} \leq 1$ if $t \geq T$. Thus,

$$
0 \leq \int_{T}^{\infty} t^{x-1} e^{-t} d t \leq \int_{T}^{\infty} e^{-t} d t=2 e^{-T / 2}
$$

and $\int_{T}^{\infty} t^{x-1} e^{-t} d t$ converges by the comparison theorem. If $x>0$, then

$$
0 \leq \int_{0}^{T} t^{x-1} e^{-t} d t<\int_{0}^{T} t^{x-1} d t
$$

converges by Theorem $2(b)$. Thus the integral defining $\Gamma(x)$ converges.
(b)

$$
\Gamma(x+1)=\int_{0}^{\infty} t^{x} e^{-t} d t=\lim _{c \rightarrow 0_{+}, R \rightarrow \infty} \int_{c}^{R} t^{x} e^{-t} d t
$$

Let $U=t^{x}, d V=e^{-t} d t, d U=x t^{x-1} d x$, and $V=-e^{-t}$,

$$
\begin{aligned}
\Gamma(x+1) & =\lim _{c \rightarrow 0_{+}, R \rightarrow \infty}\left(-\left.t^{x} e^{-t}\right|_{c} ^{R}+x \int_{c}^{R} t^{x-1} e^{-t} d t\right) \\
& =0+x \int_{0}^{\infty} t^{x-1} e^{-t} d t=x \Gamma(x)
\end{aligned}
$$

(c)

$$
\Gamma(1)=\int_{0}^{\infty} e^{-t} d t=1=0!
$$

By $(b), \Gamma(2)=1 \Gamma(1)=1 \times 1=1=1$!. In general, if $\Gamma(k+1)=k$! for some positive integer k, then $\Gamma(k+2)=(k+1) \Gamma(k+1)=(k+1) k!=(k+1)!$. Hence $\Gamma(n+1)=n$! for all integers $n \geq 0$, by induction.
(d)

$$
\Gamma\left(\frac{1}{2}\right)=\int_{0}^{\infty} t^{-1 / 2} e^{-t} d t
$$

let $t=x^{2}, d t=2 x d x$, so

$$
\begin{gathered}
\Gamma\left(\frac{1}{2}\right)=\int_{0}^{\infty} \frac{1}{x} e^{-x^{2}} 2 x d x=2 \int_{0}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} \\
\Gamma\left(\frac{3}{2}\right)=\frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\frac{1}{2} \sqrt{\pi}
\end{gathered}
$$

