Due on Friday February 27

- 1. Given a nonconstant non-decreasing function $\alpha : [a, b] \to \mathbb{R}$, let $\mathcal{R}_{\alpha}[a, b]$ denote the collection of all bounded functions on [a, b] which are Riemann-Stieltjes integrable with respect to α . Is $\mathcal{R}_{\alpha}[a, b]$ a vector space, a lattice, an algebra?
- 2. This problem focuses on computing the Riemann-Stieltjes integral for specific choices of integrators.
 - (a) Let $x_0 = a < x_1 < x_2 < \cdots < x_n = b$ be a fixed collection of points in [a, b], and let α be an increasing step function on [a, b] that is constant on each of the open intervals (x_{i-1}, x_i) and has jumps of size $\alpha_i = \alpha(x_i+) \alpha(x_i-)$ at each of the points x_i . For i = 0 and n, we make the obvious adjustments

$$\alpha_0 = \alpha(a+) - \alpha(a), \qquad \alpha_n = \alpha(b) - \alpha(b-).$$

If $f \in B[a, b]$ is continuous at each of the points x_i , show that $f \in \mathcal{R}_{\alpha}[a, b]$ and

$$\int_{a}^{b} f \, d\alpha = \sum_{i=0}^{n} f(x_i) \alpha_i.$$

- (b) If f is continuous on [1, n], compute $\int_{1}^{n} f(x)d[x]$, where [x] is the greatest integer in x. What is the value of $\int_{1}^{t} f(x)d[x]$ if t is not an integer?
- 3. Determine, with adequate justification, whether each of the following statements is true or false.
 - (a) An equicontinuous, pointwise bounded subset of $\mathcal{C}[a, b]$ is compact.
 - (b) The function $\chi_{\mathbb{Q}}$ is Riemann integrable on [0, 1].
 - (c) The function χ_{Δ} is Riemann integrable on [0, 1], where Δ denotes the Cantor middlethird set. (We have already run into this set in Homework 2, Problem 5).
 - (d) $\bigcap_{\alpha} \{ \mathcal{R}_{\alpha}[a, b] : \alpha \text{ increasing} \} = \mathcal{C}[a, b].$
 - (e) If f is a monotone function and α is both continuous and non-decreasing, then $f \in \mathcal{R}_{\alpha}[a,b]$.
 - (f) There exists a non-decreasing function $\alpha : [a, b] \to \mathbb{R}$ and a function $f \in \mathcal{R}_{\alpha}[a, b]$ such that f and α share a common-sided discontinuity.
 - (g) If $f \in \mathcal{R}_{\alpha}[a, b]$ with $m \leq f \leq M$ and if φ is continuous on [m, M], then $\varphi \circ f \in \mathcal{R}_{\alpha}[a, b]$.