Homework 6 - Math 321, Spring 2015

Due on Friday February 27

1. Given a nonconstant non-decreasing function $\alpha:[a, b] \rightarrow \mathbb{R}$, let $\mathcal{R}_{\alpha}[a, b]$ denote the collection of all bounded functions on $[a, b]$ which are Riemann-Stieltjes integrable with respect to α. Is $\mathcal{R}_{\alpha}[a, b]$ a vector space, a lattice, an algebra?
2. This problem focuses on computing the Riemann-Stieltjes integral for specific choices of integrators.
(a) Let $x_{0}=a<x_{1}<x_{2}<\cdots<x_{n}=b$ be a fixed collection of points in [$\left.a, b\right]$, and let α be an increasing step function on $[a, b]$ that is constant on each of the open intervals $\left(x_{i-1}, x_{i}\right)$ and has jumps of size $\alpha_{i}=\alpha\left(x_{i}+\right)-\alpha\left(x_{i}-\right)$ at each of the points x_{i}. For $i=0$ and n, we make the obvious adjustments

$$
\alpha_{0}=\alpha(a+)-\alpha(a), \quad \alpha_{n}=\alpha(b)-\alpha(b-) .
$$

If $f \in B[a, b]$ is continuous at each of the points x_{i}, show that $f \in \mathcal{R}_{\alpha}[a, b]$ and

$$
\int_{a}^{b} f d \alpha=\sum_{i=0}^{n} f\left(x_{i}\right) \alpha_{i}
$$

(b) If f is continuous on $[1, n]$, compute $\int_{1}^{n} f(x) d[x]$, where $[x]$ is the greatest integer in x. What is the value of $\int_{1}^{t} f(x) d[x]$ if t is not an integer?
3. Determine, with adequate justification, whether each of the following statements is true or false.
(a) An equicontinuous, pointwise bounded subset of $\mathcal{C}[a, b]$ is compact.
(b) The function $\chi_{\mathbb{Q}}$ is Riemann integrable on $[0,1]$.
(c) The function χ_{Δ} is Riemann integrable on $[0,1]$, where Δ denotes the Cantor middlethird set. (We have already run into this set in Homework 2, Problem 5).
(d) $\bigcap_{\alpha}\left\{\mathcal{R}_{\alpha}[a, b]: \alpha\right.$ increasing $\}=\mathcal{C}[a, b]$.
(e) If f is a monotone function and α is both continuous and non-decreasing, then $f \in$ $\mathcal{R}_{\alpha}[a, b]$.
(f) There exists a non-decreasing function $\alpha:[a, b] \rightarrow \mathbb{R}$ and a function $f \in \mathcal{R}_{\alpha}[a, b]$ such that f and α share a common-sided discontinuity.
(g) If $f \in \mathcal{R}_{\alpha}[a, b]$ with $m \leq f \leq M$ and if φ is continuous on $[m, M]$, then $\varphi \circ f \in \mathcal{R}_{\alpha}[a, b]$.

