Due on Friday January 30

- 1. (a) Show that if f is continuous on \mathbb{R} , then there exists a sequence $\{p_n\}$ of polynomials such that $p_n \to f$ uniformly on each bounded subset of \mathbb{R} .
 - (b) Show that there does not exist a sequence of polynomials converging uniformly on \mathbb{R} to $f(x) = \sin x$.
- 2. Suppose that f is a continuous function on [a, b] with all vanishing moments, i.e.,

$$\int_{a}^{b} x^{n} f(x) dx = 0 \quad \text{for each } n = 0, 1, 2, \cdots$$

Show that $f \equiv 0$.

3. Let $f \in \mathcal{C}[a, b]$ be continuously differentiable, and let $\epsilon > 0$. Show that there is a polynomial p such that

$$||f - p||_{\infty} < \epsilon$$
 and $||f' - p'||_{\infty} < \epsilon$.

Use this to conclude that the space $C^{[1]}[a, b]$ of all functions having a continuous first derivative on [a, b] is separable. The underlying metric on $C^{[1]}[a, b]$ is generated by the norm $||f||_{C^{[1]}} = ||f||_{\infty} + ||f'||_{\infty}$.

- 4. Let $\mathcal{P}[a, b]$ denote the space of all polynomials on [a, b]. Clearly $\mathcal{P}[a, b] \subseteq \mathcal{C}[a, b]$.
 - (a) Show that $\mathcal{P}[a, b]$ is a strict subset of $\mathcal{C}[a, b]$; in other words, there are necessarily nonpolynomial elements in $\mathcal{C}[a, b]$.
 - (b) If $f \in C[a, b]$ is not a polynomial, then show that for any sequence of polynomials $\{p_n\}$ that converges to f uniformly, one must have that $m_n =$ degree of $p_n \to \infty$.
- 5. Fill in the following steps to arrive at a fact that we used in the proof of the Weierstrass first approximation theorem. Let $B_n(f)$ denote the *n*th Bernstein polynomial for $f \in \mathcal{C}[0, 1]$, namely

$$B_n(f)(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}.$$

Set $f_0(x) = 1$, $f_1(x) = x$ and $f_2(x) = x^2$.

- (a) Show that $B_n(f_0) = f_0$ and $B_n(f_1) = f_1$.
- (b) Show that

$$B_n(f_2) = \left(1 - \frac{1}{n}\right)f_2 + \frac{1}{n}f_1.$$

(c) Use parts (a) and (b) to obtain the relation

$$\sum_{k=0}^{n} \left(\frac{k}{n} - x\right)^2 \binom{n}{k} x^k (1-x)^{n-k} = \frac{x(1-x)}{n} \le \frac{1}{4n}, \quad 0 \le x \le 1.$$