Homework 3 - Math 321, Spring 2015

Due on Friday January 30

1. (a) Show that if f is continuous on \mathbb{R}, then there exists a sequence $\left\{p_{n}\right\}$ of polynomials such that $p_{n} \rightarrow f$ uniformly on each bounded subset of \mathbb{R}.
(b) Show that there does not exist a sequence of polynomials converging uniformly on \mathbb{R} to $f(x)=\sin x$.
2. Suppose that f is a continuous function on $[a, b]$ with all vanishing moments, i.e.,

$$
\int_{a}^{b} x^{n} f(x) d x=0 \quad \text { for each } n=0,1,2, \cdots
$$

Show that $f \equiv 0$.
3. Let $f \in \mathcal{C}[a, b]$ be continuously differentiable, and let $\epsilon>0$. Show that there is a polynomial p such that

$$
\|f-p\|_{\infty}<\epsilon \quad \text { and } \quad\left\|f^{\prime}-p^{\prime}\right\|_{\infty}<\epsilon
$$

Use this to conclude that the space $\mathcal{C}^{[1]}[a, b]$ of all functions having a continuous first derivative on $[a, b]$ is separable. The underlying metric on $\mathcal{C}^{[1]}[a, b]$ is generated by the norm $\|f\|_{\mathcal{C}^{[1]}}=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$.
4. Let $\mathcal{P}[a, b]$ denote the space of all polynomials on $[a, b]$. Clearly $\mathcal{P}[a, b] \subseteq \mathcal{C}[a, b]$.
(a) Show that $\mathcal{P}[a, b]$ is a strict subset of $\mathcal{C}[a, b]$; in other words, there are necessarily nonpolynomial elements in $\mathcal{C}[a, b]$.
(b) If $f \in \mathcal{C}[a, b]$ is not a polynomial, then show that for any sequence of polynomials $\left\{p_{n}\right\}$ that converges to f uniformly, one must have that $m_{n}=$ degree of $p_{n} \rightarrow \infty$.
5. Fill in the following steps to arrive at a fact that we used in the proof of the Weierstrass first approximation theorem. Let $B_{n}(f)$ denote the nth Bernstein polynomial for $f \in \mathcal{C}[0,1]$, namely

$$
B_{n}(f)(x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k} .
$$

Set $f_{0}(x)=1, f_{1}(x)=x$ and $f_{2}(x)=x^{2}$.
(a) Show that $B_{n}\left(f_{0}\right)=f_{0}$ and $B_{n}\left(f_{1}\right)=f_{1}$.
(b) Show that

$$
B_{n}\left(f_{2}\right)=\left(1-\frac{1}{n}\right) f_{2}+\frac{1}{n} f_{1}
$$

(c) Use parts (a) and (b) to obtain the relation

$$
\sum_{k=0}^{n}\left(\frac{k}{n}-x\right)^{2}\binom{n}{k} x^{k}(1-x)^{n-k}=\frac{x(1-x)}{n} \leq \frac{1}{4 n}, \quad 0 \leq x \leq 1
$$

