Practice Problem Set for the final exam

1. Let \mathcal{S} denote the set of functions in $\mathcal{C}[-\pi, \pi]$ of the form

$$
f(x)=a \sin x+b \sin 2 x
$$

where a and b are arbitrary real numbers. Let $g(x)=x$ for $x \in[-\pi, \pi]$. Find $f \in \mathcal{S}$ for which $\|g-f\|_{2}$ is smallest.

$$
\text { (Answer: } f(x)=2 \sin x-\sin 2 x .)
$$

2. Let $\left\{f_{n}\right\}$ be a sequence of real-valued continuous functions defined on $[0,1]$. Assume that the sequence f_{n} converges uniformly to f. Answer true or false:

$$
\int_{0}^{1-\frac{1}{n}} f_{n}(x) d x \longrightarrow \int_{0}^{1} f(x) d x
$$

(Answer: True.)
3. Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be the function

$$
f(x, y)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 2 y & \text { if } x \notin \mathbb{Q} .\end{cases}
$$

(a) Compute the lower and upper Riemann integrals

$$
\underline{\int_{0}^{1}} f(x, y) d x \quad \text { and } \quad \overline{\int_{0}^{1}} f(x, y) d x
$$

in terms of y.
(b) Show that

$$
\int_{0}^{1} f(x, y) d y \text { exists for each fixed } x
$$

Compute

$$
\int_{0}^{t} f(x, y) d y \text { in terms of }(x, t) \in[0,1] \times[0,1]
$$

(c) Define

$$
F(x)=\int_{0}^{1} f(x, y) d y
$$

Show that $\int_{0}^{1} F(x) d x$ exists and find its value.
(d) There must be a moral to this long-winded story. What is it?
4. A certain Riemann-integrable function $f:[-\pi, \pi] \rightarrow \mathbb{C}$ and a complex sequence $\left\{c_{k}\right\}$ obey

$$
\left\|f(t)-\sum_{k=-n}^{n} c_{n} e^{i k t}\right\|_{2} \longrightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Prove the following statements:
(a) For any $g:[-\pi, \pi] \rightarrow \mathbb{C}$ with $g \in \mathcal{R}[-\pi, \pi]$,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) \overline{g(t)} d t=\sum_{k=-\infty}^{\infty} c_{k} \overline{\bar{g}(k)}, \text { where } \widehat{g}(k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(t) e^{-i k t} d t
$$

(b) $c_{k}=\widehat{f}(k)$ and $\sum_{k}\left|c_{k}\right|^{2}<\infty$.
5. If f is a positive continuous function on $[a, b]$, does

$$
\lim _{n \rightarrow \infty}\left[\int_{a}^{b}(f(x))^{n} d x\right]^{\frac{1}{n}}
$$

exist? If not, explain why not. If it does, find its value.
6. Evaluate the following, with careful justification of all steps:
(a)

$$
\sum_{n=-\infty}^{\infty}\left|\int_{-\pi}^{\pi} t^{5} e^{-i n t} d t\right|^{2}
$$

(Answer: $\frac{4 \pi^{12}}{11}$.)
(b)

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(-x)^{n}}{n} \text { where } x \in(-1,1) . \\
& (\text { Answer: }-\ln (1+x) .)
\end{aligned}
$$

(c)

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

(Answer: $-\ln 2$)
7. Let $g:[0,1] \rightarrow \mathbb{R}$ be bounded and $\alpha:[0,1] \rightarrow \mathbb{R}$ be nondecreasing. Assume that $g \in \mathcal{R}_{\alpha}[\delta, 1]$ for every $\delta>0$.
(a) Show that $g \in \mathcal{R}_{\alpha}[0,1]$ if α is continuous at 0 .
(b) Given an examples of a pair (g, α) which shows that the conclusion of part (a) is false if α is not assumed to be continuous at 0 .
8. Suppose that $\alpha, \beta:[0,1] \rightarrow \mathbb{R}$ are two right-continuous non-decreasing functions with $\alpha(0)=\beta(0)=0$ and such that

$$
\int_{0}^{1} f(x) d \alpha(x)=\int_{0}^{1} f(x) d \beta(x) \quad \text { for all } f \in \mathcal{C}[0,1]
$$

Show that $\alpha \equiv \beta$.
9. Let

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

be the Fourier series of a function $f \in \mathrm{BV}[-\pi, \pi]$. Show that $\left\{n a_{n}\right\}$ and $\left\{n b_{n}\right\}$ are bounded sequences.
10. Determine whether or not the following functions f are of bounded variation on $[0,1]$.
(a) $f(x)=x^{2} \sin \left(\frac{1}{x}\right)$ if $x \neq 0, f(0)=0$.
(b) $f(x)=\sqrt{x} \sin \left(\frac{1}{x}\right)$ if $x \neq 0, f(0)=0$.
11. A function $f:[a, b] \rightarrow \mathbb{R}$ is said to satisfy a Lipschitz or Hölder condition of order $\alpha>0$ if there exists $M>0$ such that

$$
|f(x)-f(y)|<M|x-y|^{\alpha} \text { for all } x, y \in[a, b] .
$$

(a) If f is such a function, show that $\alpha>1$ implies that f is constant on $[a, b]$, whereas $\alpha=1$ implies $f \in \mathrm{BV}[a, b]$.
(b) Give an example of a function not of bounded variation satisfying a Hölder condition of order $\alpha<1$.
(c) Given an example of a function of bounded variation on $[a, b]$ that satisfies no Lipschitz condition on $[a, b]$.

