Practice Problem Set 2 - Riemann-Stieltjes integration

More problems may be added to this set. Stay tuned.

- 1. If $\mathcal{R}_{\alpha}[a, b]$ contains all step functions on [a, b], show that α is continuous.
- 2. Given a sequence $\{x_n\}$ of distinct points in (a, b) and a sequence $\{c_n\}$ of positive numbers with $\sum_{n=1}^{\infty} c_n < \infty$, define an increasing function α on [a, b] by setting

$$\alpha(x) = \sum_{n=1}^{\infty} c_n I(x - x_n) \quad \text{where } I(x) = \begin{cases} 0 & \text{for } x < 0\\ 1 & \text{for } x \ge 0. \end{cases}$$

Make sure that α is well-defined and non-decreasing. Show that

$$\int f \, d\alpha = \sum_{n=1}^{\infty} c_n f(x_n) \quad \text{ for every continuous function } f \text{ on } [a, b].$$

- 3. Construct a nonconstant nondecreasing function α and a nonzero continuous function $f \in \mathcal{R}_{\alpha}[a, b]$ such that $\int_{a}^{b} |f| d\alpha = 0$. Is it possible to choose α to also be continuous? Explain.
- 4. Show that

$$||f||_{1} = \int_{a}^{b} |f(x)| \, dx$$

defines a norm on C[a, b]. Compare this norm with the sup norm $|| \cdot ||_{\infty}$ on C[a, b] that we already know. Does $|| \cdot ||_1$ define a norm on all of $\mathcal{R}[a, b]$? Explain.

- 5. Give an example of a sequence of Riemann integrable functions on [0, 1] that converges pointwise to a nonintegrable function.
- 6. Let α be continuous and nondecreasing. Given $f \in \mathcal{R}_{\alpha}[a, b]$ and $\epsilon > 0$, prove the following:
 - (a) There exists a step function h on [a, b] with $||h||_{\infty} \leq ||f||_{\infty}$ such that $\int_{a}^{b} |f h| d\alpha < \epsilon$.
 - (b) There exists a continuous function g on [a, b] with $||g||_{\infty} \leq ||f||_{\infty}$ such that $\int_{a}^{b} |f g| d\alpha < \epsilon$.

Thus a Riemann-Stieltjes integrable function can be "approximated", in the sense above, by step functions and continuous functions.

- 7. Show that BV[a, b] is closed under the norm $|| \cdot ||_{BV}$.
- 8. Suppose that α' exists and is a bounded Riemann integrable function on [a, b]. Given any bounded function f on [a, b], show that $f \in \mathcal{R}_{\alpha}[a, b]$ if and only if $f\alpha' \in \mathcal{R}[a, b]$. In either case,

$$\int_{a}^{b} f \, d\alpha = \int_{a}^{b} f(x) \alpha'(x) \, dx.$$

- 9. Given a sequence of scalars $\{c_n\}$ and a sequence of distinct points $\{x_n\}$ in (a, b), define $f(x) = c_n$ if $x = x_n$ for some n, and f(x) = 0 otherwise. Under what conditions is f of bounded variation on [a, b]?
- 10. Let I(x) = 0 if x < 0 and I(x) = 1 if $x \ge 0$. Given a sequence of scalars $\{c_n\}$ with $\sum_{n=1}^{\infty} |c_n| < \infty$ and a sequence of distinct points $\{x_n\}$ in (a, b], define $f(x) = \sum_{n=1}^{\infty} c_n I(x x_n)$ for $x \in [a, b]$. Show that $f \in BV[a, b]$ and that $V_a^b f = \sum_{n=1}^{\infty} |c_n|$.
- 11. If $\alpha \in BV[a, b]$, show that $\mathcal{R}_{\alpha}[a, b] \cap \mathcal{B}[a, b]$ is a closed subspace of $\mathcal{B}[a, b]$.
- 12. Let α be a non-decreasing function on [a, b], and let $f \in \mathcal{R}_{\alpha}[a, b]$. Define $F(x) = \int_{a}^{x} f \, d\alpha$ for $a \leq x \leq b$. Show that
 - (a) $F \in BV[a, b];$
 - (b) F is continuous at each point where α is continuous;
 - (c) F is differentiable at each point where α is differentiable and f is continuous. At any such point, $F'(x) = f(x)\alpha'(x)$.
- 13. Show that $||f_1f_2||_{\text{BV}} \leq ||f_1||_{\text{BV}} ||f_2||_{\text{BV}}$. (*Hint:* Use the decomposition f = p n + f(a) where p and n denote the positive and negative variation functions of f respectively.)