Practice Problem Set 2 - Riemann-Stieltjes integration

More problems may be added to this set. Stay tuned.

1. If $\mathcal{R}_{\alpha}[a, b]$ contains all step functions on $[a, b]$, show that α is continuous.
2. Given a sequence $\left\{x_{n}\right\}$ of distinct points in (a, b) and a sequence $\left\{c_{n}\right\}$ of positive numbers with $\sum_{n=1}^{\infty} c_{n}<\infty$, define an increasing function α on $[a, b]$ by setting

$$
\alpha(x)=\sum_{n=1}^{\infty} c_{n} I\left(x-x_{n}\right) \quad \text { where } I(x)= \begin{cases}0 & \text { for } x<0 \\ 1 & \text { for } x \geq 0 .\end{cases}
$$

Make sure that α is well-defined and non-decreasing. Show that

$$
\int f d \alpha=\sum_{n=1}^{\infty} c_{n} f\left(x_{n}\right) \quad \text { for every continuous function } f \text { on }[a, b] \text {. }
$$

3. Construct a nonconstant nondecreasing function α and a nonzero continuous function $f \in \mathcal{R}_{\alpha}[a, b]$ such that $\int_{a}^{b}|f| d \alpha=0$. Is it possible to choose α to also be continuous? Explain.
4. Show that

$$
\|f\|_{1}=\int_{a}^{b}|f(x)| d x
$$

defines a norm on $\mathcal{C}[a, b]$. Compare this norm with the sup norm $\|\cdot\|_{\infty}$ on $\mathcal{C}[a, b]$ that we already know. Does $\|\cdot\|_{1}$ define a norm on all of $\mathcal{R}[a, b]$? Explain.
5. Give an example of a sequence of Riemann integrable functions on $[0,1]$ that converges pointwise to a nonintegrable function.
6. Let α be continuous and nondecreasing. Given $f \in \mathcal{R}_{\alpha}[a, b]$ and $\epsilon>0$, prove the following:
(a) There exists a step function h on $[a, b]$ with $\|h\|_{\infty} \leq\|f\|_{\infty}$ such that $\int_{a}^{b}|f-h| d \alpha<\epsilon$.
(b) There exists a continuous function g on $[a, b]$ with $\|g\|_{\infty} \leq\|f\|_{\infty}$ such that $\int_{a}^{b} \mid f-$ $g \mid d \alpha<\epsilon$.

Thus a Riemann-Stieltjes integrable function can be "approximated", in the sense above, by step functions and continuous functions.
7. Show that $\operatorname{BV}[a, b]$ is closed under the norm $\|\cdot\|_{\mathrm{BV}}$.
8. Suppose that α^{\prime} exists and is a bounded Riemann integrable function on $[a, b]$. Given any bounded function f on $[a, b]$, show that $f \in \mathcal{R}_{\alpha}[a, b]$ if and only if $f \alpha^{\prime} \in \mathcal{R}[a, b]$. In either case,

$$
\int_{a}^{b} f d \alpha=\int_{a}^{b} f(x) \alpha^{\prime}(x) d x
$$

9. Given a sequence of scalars $\left\{c_{n}\right\}$ and a sequence of distinct points $\left\{x_{n}\right\}$ in (a, b), define $f(x)=c_{n}$ if $x=x_{n}$ for some n, and $f(x)=0$ otherwise. Under what conditions is f of bounded variation on $[a, b]$?
10. Let $I(x)=0$ if $x<0$ and $I(x)=1$ if $x \geq 0$. Given a sequence of scalars $\left\{c_{n}\right\}$ with $\sum_{n=1}^{\infty}\left|c_{n}\right|<\infty$ and a sequence of distinct points $\left\{x_{n}\right\}$ in ($\left.a, b\right]$, define $f(x)=\sum_{n=1}^{\infty} c_{n} I(x-$ $\left.x_{n}\right)$ for $x \in[a, b]$. Show that $f \in \mathrm{BV}[a, b]$ and that $V_{a}^{b} f=\sum_{n=1}^{\infty}\left|c_{n}\right|$.
11. If $\alpha \in \operatorname{BV}[a, b]$, show that $\mathcal{R}_{\alpha}[a, b] \cap \mathcal{B}[a, b]$ is a closed subspace of $\mathcal{B}[a, b]$.
12. Let α be a non-decreasing function on $[a, b]$, and let $f \in \mathcal{R}_{\alpha}[a, b]$. Define $F(x)=\int_{a}^{x} f d \alpha$ for $a \leq x \leq b$. Show that
(a) $F \in \mathrm{BV}[a, b]$;
(b) F is continuous at each point where α is continuous;
(c) F is differentiable at each point where α is differentiable and f is continuous. At any such point, $F^{\prime}(x)=f(x) \alpha^{\prime}(x)$.
13. Show that $\left|\mid f_{1} f_{2}\left\|_{\mathrm{BV}} \leq\right\| f_{1}\left\|_{\mathrm{BV}}\right\| f_{2} \|_{\mathrm{BV}}\right.$. (Hint: Use the decomposition $f=p-n+f(a)$ where p and n denote the positive and negative variation functions of f respectively.)
