Practice Problem Set 1 - Sequences and Series of functions

More problems may be added to this set. Stay tuned.

1. Evaluate with justification

$$\lim_{n \to \infty} \int_0^\pi \frac{n + \sin nx}{3n - \sin^2 nx} \, dx.$$

2. For each $n \in \mathbb{N}$, you are given a differentiable function $f_n : \mathbb{R} \to \mathbb{R}$ that satisfies

 $f_n(0) = 2000, \qquad |f'_n(t)| \le 321 + |t|^{201} \text{ for all } t \in \mathbb{R}.$

Prove that there exists $f : \mathbb{R} \to \mathbb{R}$ and a subsequence f_{n_k} with the following property: for every compact subset K of \mathbb{R} , $f_{n_k} \to f$ uniformly on K. Clearly identify the principal theorems and methods that you apply.

- 3. State whether the following statements are true or false, with adequate justification.
 - (a) There exists a function $f : \mathbb{R} \to \mathbb{R}$, which is differentiable at exactly one point.
 - (b) In every metric space, a closed and bounded set is compact.
 - (c) For any nonempty subset of $\mathcal{C}[0,1]$ that is closed, bounded and equicontinuous, there exists $g \in \mathcal{F}$ such that

$$\int_0^1 g(x) \, dx \le \int_0^1 f(x) \, dx \qquad \text{for all } f \in \mathcal{F}.$$

- (d) The function $F(x) = \sum_{n=1}^{\infty} (nx)^{-n}$ is continuous but not differentiable on $\mathbb{R} \setminus \{0\}$.
- (e) There exists a dense subset of $\mathcal{C}[0,1]$ with empty interior.
- 4. Let $\phi : [0,1] \times \mathbb{R} \to \mathbb{R}$ be bounded and continuous. For each $n \in \mathbb{N}$, let $F_n : [0,1] \to \mathbb{R}$ satisfy

$$F_n(0) = 0,$$
 $F'_n(t) = \phi(t, F_n(t))$ for $t \in [0, 1].$

Prove that there is a subsequence $\{F_{n_k}\}$ that converges uniformly to a function F that is a solution of the differential equation

$$y(0) = 0,$$
 $y'(t) = \phi(t, F(t))$ for $t \in [0, 1].$

5. Let $\alpha > 0$. A function $f : \mathbb{R} \to \mathbb{R}$ is said to be Hölder continuous with exponent α if the quantity

$$||f||_{\alpha} := \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}$$

is finite.

(a) Show that the only Hölder continuous functions of exponent $\alpha > 1$ are the constant functions. For each $0 < \alpha \leq 1$, give examples of nonconstant Hölder continuous functions of exponent α .

(b) Let $\{f_n\}$ be a sequence of Hölder continuous real-valued functions on \mathbb{R} such that obey

 $\sup_{x \in \mathbb{R}} |f_n(x)| \le 1 \quad \text{and} \quad ||f_n||_{\alpha} \le 1 \quad \text{for all } n \in \mathbb{N}.$

Prove that there is a continuous function $f : \mathbb{R} \to \mathbb{R}$ and a subsequence of $\{f_n : n \in \mathbb{N}\}$ that converges pointwise to f and that furthermore converges uniformly to f on [-M, M] for every M > 0.

- 6. Let $\{f_n : n \in \mathbb{N}\}\$ be a uniformly convergent sequence of continuous real-valued functions defined on a metric space M and let g be a continuous function on \mathbb{R} . Define for each $n \in \mathbb{N}, h_n(x) = g(f_n(x))$.
 - (a) Let M = [0, 1]. Prove that the sequence $\{h_n : n \in \mathbb{N}\}$ converges uniformly on [0, 1].
 - (b) Let $M = \mathbb{R}$. Either prove that the sequence $\{h_n : n \in \mathbb{N}\}$ converges uniformly on \mathbb{R} or provide a counterexample.
- 7. Give an example of each of the following, together with a brief explanation of your example. If such an example does not exist, explain why not.
 - (a) A sequence of functions that converges to zero pointwise on [0, 1] and uniformly on $[\epsilon, 1 \epsilon]$ for every $\epsilon > 0$, but does not converge uniformly on [0, 1].
 - (b) A continuous function $f: (-1,1) \to \mathbb{R}$ that cannot be uniformly approximated by a polynomial.
 - (c) A monotonically decreasing sequence of functions $f_n : [0,1] \to \mathbb{R}$ which converges pointwise, but not uniformly, to zero.
- 8. Let $f_n : [0,1] \to \mathbb{R}$ be a sequence of continuous functions that obey $|f_n(y)| \le 1$ for all $n \in \mathbb{N}$ and all $y \in [0,1]$. Let $T : [0,1] \times [0,1] \to \mathbb{R}$ be continuous. Define

$$g_n(x) = \int_0^1 T(x, y) f_n(y) \, dy.$$

Prove that the sequence $\{g_n\}$ has a uniformly convergent subsequence.

- 9. Let $\mathbb{H} = \{(x, y) \in \mathbb{R}^2 : x, y \ge 0, \ x^2 + y^2 \le 1\}.$
 - (a) Prove that for any $\epsilon > 0$ and any continuous function $f : \mathbb{H} \to \mathbb{R}$ there exists a function g(x, y) of the form

$$g(x,y) = \sum_{m=0}^{N} \sum_{n=0}^{N} a_{mn} x^{2m} y^{2n}, \qquad N = 0, 1, 2, \cdots, \quad a_{mn} \in \mathbb{R}$$

such that

$$\sup_{(x,y)\in\mathbb{H}} |f(x,y) - g(x,y)| < \epsilon.$$

(b) Does the result in (a) hold if \mathbb{H} is replaced by the disk $\mathbb{D} = \{(x, y) : x^2 + y^2 \le 1\}$?

10. Give examples of the following (provide brief justifications):

- (a) A right-continuous increasing function on [-1,1] which is discontinuous at 0 and continuous elsewhere.
- (b) A sequence $\{f_n\}$ of real-valued differentiable functions on [0, 4] which converges uniformly to a differentiable function f but such that f'_n does not converge pointwise to f'.
- 11. Prove that the series

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{x^2}{1+x^2} \right)^{\frac{1}{n}}$$

is uniformly convergent on \mathbb{R} .

- 12. Let $f : [0,1] \to \mathbb{R}$ have left limits at each point in (0,1] and right limits at all points in [0,1). Prove that f is a bounded function.
- 13. Consider the sequence of functions $f_n : \mathbb{R} \to \mathbb{R}$ defined by $f_n(x) = x/(1 + nx^2), n \in \mathbb{N}$. Show that $\{f_n : n \in \mathbb{N}\}$ converges uniformly to a function f and that the equation

$$f'(x) = \lim_{n \to \infty} f'_n(x)$$

is correct if $x \neq 0$, but false if x = 0.

- 14. Let f and $\{f_n : n \in \mathbb{N}\}$ be continuous real-valued functions on [0, 1].
 - (a) If $\{f_n\}$ converges uniformly to f, show that for each $k \in \{0, 1, 2, \dots\}$

$$\lim_{n \to \infty} \int_0^1 f_n(x) x^k \, dx = \int_0^1 f(x) x^k \, dx$$

- (b) Prove that the converse of the statement in (a) does not hold in general.
- (c) However, there does exist a partial converse to (a), under some extra assumptions. Suppose that each f_n is continuously differentiable, with $f_n(0) = 0$ and $\{f'_n : n \in \mathbb{N}\}$ uniformly bounded. If for every $k \in \{0, 1, 2, \cdots\}$,

$$\lim_{n \to \infty} \int_0^1 f_n(x) x^k \, dx \text{ exists and equals } m_k \text{ for some } m_k \in \mathbb{R},$$

prove that f_n converges uniformly to a function $f \in C[0, 1]$ for which

$$m_k = \int_0^1 x^k f(x) \, dx.$$