Practice Problem Set 1 - Sequences and Series of functions

More problems may be added to this set. Stay tuned.

1. Evaluate with justification

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi} \frac{n+\sin n x}{3 n-\sin ^{2} n x} d x
$$

2. For each $n \in \mathbb{N}$, you are given a differentiable function $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ that satisfies

$$
f_{n}(0)=2000, \quad\left|f_{n}^{\prime}(t)\right| \leq 321+|t|^{201} \text { for all } t \in \mathbb{R}
$$

Prove that there exists $f: \mathbb{R} \rightarrow \mathbb{R}$ and a subsequence $f_{n_{k}}$ with the following property: for every compact subset K of $\mathbb{R}, f_{n_{k}} \rightarrow f$ uniformly on K. Clearly identify the principal theorems and methods that you apply.
3. State whether the following statements are true or false, with adequate justification.
(a) There exists a function $f: \mathbb{R} \rightarrow \mathbb{R}$, which is differentiable at exactly one point.
(b) In every metric space, a closed and bounded set is compact.
(c) For any nonempty subset of $\mathcal{C}[0,1]$ that is closed, bounded and equicontinuous, there exists $g \in \mathcal{F}$ such that

$$
\int_{0}^{1} g(x) d x \leq \int_{0}^{1} f(x) d x \quad \text { for all } f \in \mathcal{F}
$$

(d) The function $F(x)=\sum_{n=1}^{\infty}(n x)^{-n}$ is continuous but not differentiable on $\mathbb{R} \backslash\{0\}$.
(e) There exists a dense subset of $\mathcal{C}[0,1]$ with empty interior.
4. Let $\phi:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ be bounded and continuous. For each $n \in \mathbb{N}$, let $F_{n}:[0,1] \rightarrow \mathbb{R}$ satisfy

$$
F_{n}(0)=0, \quad F_{n}^{\prime}(t)=\phi\left(t, F_{n}(t)\right) \quad \text { for } t \in[0,1] .
$$

Prove that there is a subsequence $\left\{F_{n_{k}}\right\}$ that converges uniformly to a function F that is a solution of the differential equation

$$
y(0)=0, \quad y^{\prime}(t)=\phi(t, F(t)) \quad \text { for } t \in[0,1] .
$$

5. Let $\alpha>0$. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be Hölder continuous with exponent α if the quantity

$$
\|f\|_{\alpha}:=\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}
$$

is finite.
(a) Show that the only Hölder continuous functions of exponent $\alpha>1$ are the constant functions. For each $0<\alpha \leq 1$, give examples of nonconstant Hölder continuous functions of exponent α.
(b) Let $\left\{f_{n}\right\}$ be a sequence of Hölder continuous real-valued functions on \mathbb{R} such that obey

$$
\sup _{x \in \mathbb{R}}\left|f_{n}(x)\right| \leq 1 \quad \text { and } \quad\left\|f_{n}\right\|_{\alpha} \leq 1 \quad \text { for all } n \in \mathbb{N}
$$

Prove that there is a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a subsequence of $\left\{f_{n}: n \in \mathbb{N}\right\}$ that converges pointwise to f and that furthermore converges uniformly to f on $[-M, M]$ for every $M>0$.
6. Let $\left\{f_{n}: n \in \mathbb{N}\right\}$ be a uniformly convergent sequence of continuous real-valued functions defined on a metric space M and let g be a continuous function on \mathbb{R}. Define for each $n \in \mathbb{N}, h_{n}(x)=g\left(f_{n}(x)\right)$.
(a) Let $M=[0,1]$. Prove that the sequence $\left\{h_{n}: n \in \mathbb{N}\right\}$ converges uniformly on $[0,1]$.
(b) Let $M=\mathbb{R}$. Either prove that the sequence $\left\{h_{n}: n \in \mathbb{N}\right\}$ converges uniformly on \mathbb{R} or provide a counterexample.
7. Give an example of each of the following, together with a brief explanation of your example. If such an example does not exist, explain why not.
(a) A sequence of functions that converges to zero pointwise on $[0,1]$ and uniformly on $[\epsilon, 1-\epsilon]$ for every $\epsilon>0$, but does not converge uniformly on $[0,1]$.
(b) A continuous function $f:(-1,1) \rightarrow \mathbb{R}$ that cannot be uniformly approximated by a polynomial.
(c) A monotonically decreasing sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ which converges pointwise, but not uniformly, to zero.
8. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be a sequence of continuous functions that obey $\left|f_{n}(y)\right| \leq 1$ for all $n \in \mathbb{N}$ and all $y \in[0,1]$. Let $T:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be continuous. Define

$$
g_{n}(x)=\int_{0}^{1} T(x, y) f_{n}(y) d y
$$

Prove that the sequence $\left\{g_{n}\right\}$ has a uniformly convergent subsequence.
9. Let $\mathbb{H}=\left\{(x, y) \in \mathbb{R}^{2}: x, y \geq 0, x^{2}+y^{2} \leq 1\right\}$.
(a) Prove that for any $\epsilon>0$ and any continuous function $f: \mathbb{H} \rightarrow \mathbb{R}$ there exists a function $g(x, y)$ of the form

$$
g(x, y)=\sum_{m=0}^{N} \sum_{n=0}^{N} a_{m n} x^{2 m} y^{2 n}, \quad N=0,1,2, \cdots, \quad a_{m n} \in \mathbb{R}
$$

such that

$$
\sup _{(x, y) \in \mathbb{H}}|f(x, y)-g(x, y)|<\epsilon
$$

(b) Does the result in (a) hold if \mathbb{H} is replaced by the disk $\mathbb{D}=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$?
10. Give examples of the following (provide brief justifications):
(a) A right-continuous increasing function on $[-1,1]$ which is discontinuous at 0 and continuous elsewhere.
(b) A sequence $\left\{f_{n}\right\}$ of real-valued differentiable functions on $[0,4]$ which converges uniformly to a differentiable function f but such that f_{n}^{\prime} does not converge pointwise to f^{\prime}.
11. Prove that the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}\left(\frac{x^{2}}{1+x^{2}}\right)^{\frac{1}{n}}
$$

is uniformly convergent on \mathbb{R}.
12. Let $f:[0,1] \rightarrow \mathbb{R}$ have left limits at each point in $(0,1]$ and right limits at all points in $[0,1)$. Prove that f is a bounded function.
13. Consider the sequence of functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{n}(x)=x /\left(1+n x^{2}\right), n \in \mathbb{N}$. Show that $\left\{f_{n}: n \in \mathbb{N}\right\}$ converges uniformly to a function f and that the equation

$$
f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)
$$

is correct if $x \neq 0$, but false if $x=0$.
14. Let f and $\left\{f_{n}: n \in \mathbb{N}\right\}$ be continuous real-valued functions on $[0,1]$.
(a) If $\left\{f_{n}\right\}$ converges uniformly to f, show that for each $k \in\{0,1,2, \cdots\}$

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) x^{k} d x=\int_{0}^{1} f(x) x^{k} d x
$$

(b) Prove that the converse of the statement in (a) does not hold in general.
(c) However, there does exist a partial converse to (a), under some extra assumptions. Suppose that each f_{n} is continuously differentiable, with $f_{n}(0)=0$ and $\left\{f_{n}^{\prime}: n \in \mathbb{N}\right\}$ uniformly bounded. If for every $k \in\{0,1,2, \cdots\}$,

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) x^{k} d x \text { exists and equals } m_{k} \text { for some } m_{k} \in \mathbb{R}
$$

prove that f_{n} converges uniformly to a function $f \in C[0,1]$ for which

$$
m_{k}=\int_{0}^{1} x^{k} f(x) d x
$$

