Midterm Solutions - Math 321

- 1. Give complete definitions of the following terms:
 - (a) an equicontinuous family of functions in $\mathcal{C}[0,1]$.

Solution. A family of functions $\mathcal{F} \subseteq \mathcal{C}[0,1]$ is said to be equicontinuous if for every $\epsilon > 0$, there exists $\delta > 0$ such that

(1)
$$|f(x) - f(y)| < \epsilon$$
 whenever $|x - y| < \delta$, $x, y \in [0, 1]$ and for all $f \in \mathcal{F}$.

(b) a sublattice of $\mathcal{B}[0,1]$.

Solution. The space $\mathcal{B}[0,1]$ is equipped with a partial order \leq defined as follows: given $f, g \in \mathcal{B}[0,1]$, we say that $f \leq g$ if for every $x \in [0,1]$, the real number f(x) is less than or equal to the real number g(x). Given $f, g \in \mathcal{B}[0,1]$, we define functions $m, M \in \mathcal{B}[0,1]$ as follows:

$$m(x) = \min[f(x), g(x)], \qquad M(x) = \max[f(x), g(x)].$$

These functions have the following properties: if $h, k \in \mathcal{B}[0, 1]$ are such that $f, g \leq h$ and $k \leq f, g$, then we must have that $k \leq m$ and $M \leq h$. We refer to m and M as $\min(f, g)$ and $\max(f, g)$ respectively.

We say that $\mathcal{L} \subseteq \mathcal{B}[0,1]$ is a sublattice if for every $f, g \in \mathcal{L}$, the functions $\min(f,g)$ and $\max(f,g)$ also lie in \mathcal{L} .

- 2. Give examples of the following:
 - (a) Function classes $\mathcal{F}, \mathcal{G} \subseteq \mathcal{C}[0, 1]$ such that both \mathcal{F} and \mathcal{G} consist of infinitely many non-constant functions and are uniformly bounded, for which \mathcal{F} is equicontinuous but \mathcal{G} is not.

Solution. Consider the following subsets of $\mathcal{C}[0,1]$:

$$\mathcal{F} = \{ f_n(x) = x + \frac{1}{n} : n \in \mathbb{N} \}, \qquad \mathcal{G} = \{ g_n(x) = x^n : n \in \mathbb{N} \}.$$

Both collections are uniformly bounded, \mathcal{F} by 2 and \mathcal{G} by 1.

The collection \mathcal{F} is equicontinuous, since (1) holds with $\delta = \epsilon$. However \mathcal{G} is not equicontinuous. We can see this in two ways. Consider $x_0 = 1$. Aiming for a contradiction, suppose for any $\epsilon > 0$ there is a $\delta > 0$ such that $|x - 1| < \delta$ implies $|x^n - 1| < \epsilon$ for all n. Then choosing $x = 1 - \frac{1}{n}$ for sufficiently large $n > 1/\delta$, we find that $|(1 - (1 - \frac{1}{n})^n| < \epsilon$. But the left hand side of this inequality converges to e^{-1} as $n \to \infty$, and hence this inequality is false for large n if $\epsilon = \frac{e-1}{2e}$ for example. Alternatively, observe that $g_n(x)$ converges pointwise to

$$g(x) = \begin{cases} 0 & \text{if } \le x < 1\\ 1 & \text{if } x = 1. \end{cases}$$

which is not continuous and hence the convergence cannot be uniform and by HW5 Q5 \mathcal{G} cannot be equicontinuous.

(b) A nontrivial sublattice of C[0,1] that is a subspace but not a subalgebra. Here "non-trivial" means that the sublattice must contain at least one non-constant function.

Solution. The class of piecewise linear functions on $\mathcal{C}[0,1]$ is a subspace but not an algebra.

3. Given any function $f \in \mathcal{C}(\mathbb{R}^n)$, show that there exists a sequence $\{p_k\}$ of polynomials in n variables that converges uniformly to f on every compact subset of \mathbb{R}^n . (

Solution. For any $N \ge 1$, the class of polynomials of n variables forms dense subalgebra of $\mathcal{C}(B_N)$ where $B_N = \{x \in \mathbb{R}^n : ||x|| \le N\}$. This follows from the Stone-Weierstrass theorem, since this subalgebra vanishes nowhere (due to the presence of the constant function 1) and separates points (due to the presence of the polynomials $f_j(x_1, \dots, x_n) = x_j$). Thus there exists a polynomial p_N such that $\sup_{x \in B_N} |f(x) - p_N(x)| < \frac{1}{N}$.

We claim that the sequence $\{p_N\}$ converges uniformly on every compact subset of \mathbb{R}^n . Indeed, given any compact set K and $\epsilon > 0$, we find a large enough N such that $K \subseteq B_N$ and $N > \frac{1}{\epsilon}$. Then for all $k \ge N$,

$$\sup_{x \in K} |p_k(x) - f(x)| \le \sup_{x \in B_k} |p_k(x) - f(x)| < \frac{1}{k} \le \frac{1}{N} < \epsilon,$$

which proves the result.

- 4. Give brief answers to the following questions. The answer should be in the form of a short proof or an example, as appropriate.
 - (a) Is it true that any continuous function f in C[1,2] can be uniformly approximated by a sequence of even polynomials, and also by a sequence of odd polynomials?

Solution. Yes. The function $f(\sqrt{x})$ is continuous on [1,2], hence by Weierstrass's approximation theorem there is a polynomial p that is approximates it arbitrarily closely in sup norm. This implies that f is approximated by the even polynomial $p(x^2)$. In order to approximate f by an odd polynomial, note that the continuous function f(x)/x can be approximated by an even polynomial by the first part of this problem.

(b) Would your answer to part (a) change if f lies in $\mathcal{C}[-1,2]$?

Solution. The answer would change, and the statement of part (a) is no longer true. Since even polynomials do not separate the points x and -x, a function such as $\sin x$ would not be approximable by even polynomials. On the other hand, odd polynomials must vanish at zero, hence $\cos x$ cannot be approximated by odd polynomials. \Box

(c) Let $\{f_n : n \ge 1\}$ be a sequence in $\mathcal{C}[a, b]$ with $||f_n||_{\infty} \le 1$ for all n. Define

$$F_n(x) = \int_a^x f_n(t) \, dt.$$

Does $\{F_n\}$ have a uniformly convergent subsequence?

Solution. Yes. The set $\{F_n\}$ is uniformly bounded by (b-a) (using the bound on $||f_n||_{\infty}$) and consists of Lipschitz functions with Lipschitz constant 1,

$$|F_n(x) - F_n(y)| = \left| \int_x^y f_n(t) \, dt \right| \le |x - y|$$

hence equicontinuous. By the Arzela-Ascoli theorem, this collection of functions is relatively compact in C[a, b], hence admits a uniformly convergent subsequence.

(d) Can a sequence of Riemann integrable functions on [a, b] converge pointwise to a nonintegrable function?

Solution. Yes. Let $\mathbb{Q} = \{q_1, q_2, \cdots, q_n, \cdots\}$, and set $f_n = \chi_{\{q_1, \cdots, q_n\}}$. Each f_n is Riemann-integrable (with integral 0), and converges pointwise to $\chi_{\mathbb{Q}}$ which is not. \Box

(e) Consider the space $\mathcal{C}_0(\mathbb{R})$ of all continuous functions "vanishing at infinity"

$$\mathcal{C}_0(\mathbb{R}) = \big\{ f \in \mathcal{C}(\mathbb{R}) : \lim_{|x| \to \infty} f(x) = 0 \big\},\$$

endowed with the sup norm. Is this space separable?

Solution. Yes, the space is separable. For each $N \geq 1$, let \mathcal{G}_N denote the space of polygonal functions on [-N, N] with rational nodes which vanish on $|x| \geq N$. We have proved in class that each \mathcal{G}_N is countable. Further given any $g \in \mathcal{C}[-N, N]$ such that $|g(\pm N)| < \kappa$, we can use the usual uniform continuity argument to find $G \in \mathcal{G}_N$ such that $\sup_{|x| < N} |g(x) - G(x)| < \kappa$.

We claim that the countable union of these sets $\mathcal{G} = \bigcup_{N=1}^{\infty} \mathcal{G}_N$, which is countable, is dense in $\mathcal{C}_0(\mathbb{R})$. To see this fix $\epsilon > 0$ and any $f \in \mathcal{C}_0(\mathbb{R})$. Now choose N such that $|f(x)| < \epsilon$ for $|x| \ge N$. Then pick $G \in \mathcal{G}_N$ such that G approximates f restricted to [-N, N] in the sense described above, i.e., $\sup_{|x|\le N} |f(x) - G(x)| < \epsilon$. Combining the two inequalities we get that $||f - G||_{\infty} = \max[\sup_{|x|\le N} |f(x) - G(x)|, \sup_{|x|\ge N} |f(x)|] < \epsilon$, as desired.