
Midterm Solutions - Math 321

1. Give complete definitions of the following terms:

(a) an equicontinuous family of functions in C[0, 1].

Solution. A family of functions F ⊆ C[0, 1] is said to be equicontinuous if for every
ε > 0, there exists δ > 0 such that

(1) |f(x)− f(y)| < ε whenever |x− y| < δ, x, y ∈ [0, 1] and for all f ∈ F .

�

(b) a sublattice of B[0, 1].

Solution. The space B[0, 1] is equipped with a partial order ≤ defined as follows: given
f, g ∈ B[0, 1], we say that f ≤ g if for every x ∈ [0, 1], the real number f(x) is less than
or equal to the real number g(x). Given f, g ∈ B[0, 1], we define functions m,M ∈ B[0, 1]
as follows:

m(x) = min
[
f(x), g(x)

]
, M(x) = max

[
f(x), g(x)

]
.

These functions have the following properties: if h, k ∈ B[0, 1] are such that f, g ≤ h and
k ≤ f, g, then we must have that k ≤ m and M ≤ h. We refer to m and M as min(f, g)
and max(f, g) respectively.

We say that L ⊆ B[0, 1] is a sublattice if for every f, g ∈ L, the functions min(f, g) and
max(f, g) also lie in L. �

2. Give examples of the following:

(a) Function classes F ,G ⊆ C[0, 1] such that both F and G consist of infinitely many
non-constant functions and are uniformly bounded, for which F is equicontinuous but
G is not.

Solution. Consider the following subsets of C[0, 1]:

F = {fn(x) = x+
1

n
: n ∈ N}, G = {gn(x) = xn : n ∈ N}.

Both collections are uniformly bounded, F by 2 and G by 1.
The collection F is equicontinuous, since (1) holds with δ = ε. However G is not
equicontinuous. We can see this in two ways. Consider x0 = 1. Aiming for a con-
tradiction, suppose for any ε > 0 there is a δ > 0 such that |x − 1| < δ implies
|xn − 1| < ε for all n. Then choosing x = 1− 1

n
for sufficiently large n > 1/δ, we find

that |(1− (1− 1
n
)n| < ε. But the left hand side of this inequality converges to e−1 as

n→∞, and hence this inequality is false for large n if ε = e−1
2e

for example.
Alternatively, observe that gn(x) converges pointwise to

g(x) =

{
0 if ≤ x < 1

1 if x = 1.

which is not continuous and hence the convergence cannot be uniform and by HW5
Q5 G cannot be equicontinuous.

�
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(b) A nontrivial sublattice of C[0, 1] that is a subspace but not a subalgebra. Here “non-
trivial” means that the sublattice must contain at least one non-constant function.

Solution. The class of piecewise linear functions on C[0, 1] is a subspace but not an algebra.
�

3. Given any function f ∈ C(Rn), show that there exists a sequence {pk} of polynomials in
n variables that converges uniformly to f on every compact subset of Rn. (

Solution. For any N ≥ 1, the class of polynomials of n variables forms dense subalgebra
of C(BN) where BN = {x ∈ Rn : ‖x‖ ≤ N}. This follows from the Stone-Weierstrass
theorem, since this subalgebra vanishes nowhere (due to the presence of the constant
function 1) and separates points (due to the presence of the polynomials fj(x1, · · · , xn) =
xj). Thus there exists a polynomial pN such that supx∈BN

|f(x)− pN(x)| < 1
N

.
We claim that the sequence {pN} converges uniformly on every compact subset of Rn.

Indeed, given any compact set K and ε > 0, we find a large enough N such that K ⊆ BN

and N > 1
ε
. Then for all k ≥ N ,

sup
x∈K
|pk(x)− f(x)| ≤ sup

x∈Bk

|pk(x)− f(x)| < 1

k
≤ 1

N
< ε,

which proves the result. �

4. Give brief answers to the following questions. The answer should be in the form of a short
proof or an example, as appropriate.

(a) Is it true that any continuous function f in C[1, 2] can be uniformly approximated by
a sequence of even polynomials, and also by a sequence of odd polynomials?

Solution. Yes. The function f(
√
x) is continuous on [1, 2], hence by Weierstrass’s

approximation theorem there is a polynomial p that is approximates it arbitrarily
closely in sup norm. This implies that f is approximated by the even polynomial
p(x2). In order to approximate f by an odd polynomial, note that the continuous
function f(x)/x can be approximated by an even polynomial by the first part of this
problem. �

(b) Would your answer to part (a) change if f lies in C[−1, 2]?

Solution. The answer would change, and the statement of part (a) is no longer true.
Since even polynomials do not separate the points x and −x, a function such as sinx
would not be approximable by even polynomials. On the other hand, odd polynomials
must vanish at zero, hence cosx cannot be approximated by odd polynomials. �

(c) Let {fn : n ≥ 1} be a sequence in C[a, b] with ||fn||∞ ≤ 1 for all n. Define

Fn(x) =

∫ x

a

fn(t) dt.

Does {Fn} have a uniformly convergent subsequence?
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Solution. Yes. The set {Fn} is uniformly bounded by (b − a) (using the bound on
||fn||∞) and consists of Lipschitz functions with Lipschitz constant 1,

|Fn(x)− Fn(y)| =
∣∣∫ y

x

fn(t) dt
∣∣ ≤ |x− y|

hence equicontinuous. By the Arzela-Ascoli theorem, this collection of functions is
relatively compact in C[a, b], hence admits a uniformly convergent subsequence. �

(d) Can a sequence of Riemann integrable functions on [a, b] converge pointwise to a non-
integrable function?

Solution. Yes. Let Q = {q1, q2, · · · , qn, · · · }, and set fn = χ{q1,··· ,qn}. Each fn is
Riemann-integrable (with integral 0), and converges pointwise to χQ which is not. �

(e) Consider the space C0(R) of all continuous functions “vanishing at infinity”

C0(R) =
{
f ∈ C(R) : lim

|x|→∞
f(x) = 0

}
,

endowed with the sup norm. Is this space separable?

Solution. Yes, the space is separable. For each N ≥ 1, let GN denote the space of
polygonal functions on [−N,N ] with rational nodes which vanish on |x| ≥ N . We
have proved in class that each GN is countable. Further given any g ∈ C[−N,N ] such
that |g(±N)| < κ, we can use the usual uniform continuity argument to find G ∈ GN
such that sup|x|≤N |g(x)−G(x)| < κ.

We claim that the countable union of these sets G =
⋃∞
N=1 GN , which is countable, is

dense in C0(R). To see this fix ε > 0 and any f ∈ C0(R). Now choose N such that
|f(x)| < ε for |x| ≥ N . Then pick G ∈ GN such that G approximates f restricted to
[−N,N ] in the sense described above, i.e., sup|x|≤N |f(x)−G(x)| < ε. Combining the
two inequalities we get that ||f−G||∞ = max[sup|x|≤N |f(x)−G(x)|, sup|x|≥N |f(x)|] <
ε, as desired. �


