Midterm Solutions - Math 321

1. Give complete definitions of the following terms:
(a) an equicontinuous family of functions in $\mathcal{C}[0,1]$.

Solution. A family of functions $\mathcal{F} \subseteq \mathcal{C}[0,1]$ is said to be equicontinuous if for every $\epsilon>0$, there exists $\delta>0$ such that

$$
\begin{equation*}
|f(x)-f(y)|<\epsilon \text { whenever }|x-y|<\delta, x, y \in[0,1] \text { and for all } f \in \mathcal{F} \tag{1}
\end{equation*}
$$

(b) a sublattice of $\mathcal{B}[0,1]$.

Solution. The space $\mathcal{B}[0,1]$ is equipped with a partial order \leq defined as follows: given $f, g \in \mathcal{B}[0,1]$, we say that $f \leq g$ if for every $x \in[0,1]$, the real number $f(x)$ is less than or equal to the real number $g(x)$. Given $f, g \in \mathcal{B}[0,1]$, we define functions $m, M \in \mathcal{B}[0,1]$ as follows:

$$
m(x)=\min [f(x), g(x)], \quad M(x)=\max [f(x), g(x)]
$$

These functions have the following properties: if $h, k \in \mathcal{B}[0,1]$ are such that $f, g \leq h$ and $k \leq f, g$, then we must have that $k \leq m$ and $M \leq h$. We refer to m and M as $\min (f, g)$ and $\max (f, g)$ respectively.

We say that $\mathcal{L} \subseteq \mathcal{B}[0,1]$ is a sublattice if for every $f, g \in \mathcal{L}$, the functions $\min (f, g)$ and $\max (f, g)$ also lie in \mathcal{L}.
2. Give examples of the following:
(a) Function classes $\mathcal{F}, \mathcal{G} \subseteq \mathcal{C}[0,1]$ such that both \mathcal{F} and \mathcal{G} consist of infinitely many non-constant functions and are uniformly bounded, for which \mathcal{F} is equicontinuous but \mathcal{G} is not.

Solution. Consider the following subsets of $\mathcal{C}[0,1]$:

$$
\mathcal{F}=\left\{f_{n}(x)=x+\frac{1}{n}: n \in \mathbb{N}\right\}, \quad \mathcal{G}=\left\{g_{n}(x)=x^{n}: n \in \mathbb{N}\right\}
$$

Both collections are uniformly bounded, \mathcal{F} by 2 and \mathcal{G} by 1.
The collection \mathcal{F} is equicontinuous, since (1) holds with $\delta=\epsilon$. However \mathcal{G} is not equicontinuous. We can see this in two ways. Consider $x_{0}=1$. Aiming for a contradiction, suppose for any $\epsilon>0$ there is a $\delta>0$ such that $|x-1|<\delta$ implies $\left|x^{n}-1\right|<\epsilon$ for all n. Then choosing $x=1-\frac{1}{n}$ for sufficiently large $n>1 / \delta$, we find that $\left\lvert\,\left(\left.1-\left(1-\frac{1}{n}\right)^{n} \right\rvert\,<\epsilon\right.$. But the left hand side of this inequality converges to e^{-1} as \right. $n \rightarrow \infty$, and hence this inequality is false for large n if $\epsilon=\frac{e-1}{2 e}$ for example.
Alternatively, observe that $g_{n}(x)$ converges pointwise to

$$
g(x)= \begin{cases}0 & \text { if } \leq x<1 \\ 1 & \text { if } x=1\end{cases}
$$

which is not continuous and hence the convergence cannot be uniform and by HW5 Q5 \mathcal{G} cannot be equicontinuous.
(b) A nontrivial sublattice of $\mathcal{C}[0,1]$ that is a subspace but not a subalgebra. Here "nontrivial" means that the sublattice must contain at least one non-constant function.

Solution. The class of piecewise linear functions on $\mathcal{C}[0,1]$ is a subspace but not an algebra.
3. Given any function $f \in \mathcal{C}\left(\mathbb{R}^{n}\right)$, show that there exists a sequence $\left\{p_{k}\right\}$ of polynomials in n variables that converges uniformly to f on every compact subset of \mathbb{R}^{n}. (

Solution. For any $N \geq 1$, the class of polynomials of n variables forms dense subalgebra of $\mathcal{C}\left(B_{N}\right)$ where $B_{N}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq N\right\}$. This follows from the Stone-Weierstrass theorem, since this subalgebra vanishes nowhere (due to the presence of the constant function 1) and separates points (due to the presence of the polynomials $f_{j}\left(x_{1}, \cdots, x_{n}\right)=$ $\left.x_{j}\right)$. Thus there exists a polynomial p_{N} such that $\sup _{x \in B_{N}}\left|f(x)-p_{N}(x)\right|<\frac{1}{N}$.

We claim that the sequence $\left\{p_{N}\right\}$ converges uniformly on every compact subset of \mathbb{R}^{n}. Indeed, given any compact set K and $\epsilon>0$, we find a large enough N such that $K \subseteq B_{N}$ and $N>\frac{1}{\epsilon}$. Then for all $k \geq N$,

$$
\sup _{x \in K}\left|p_{k}(x)-f(x)\right| \leq \sup _{x \in B_{k}}\left|p_{k}(x)-f(x)\right|<\frac{1}{k} \leq \frac{1}{N}<\epsilon,
$$

which proves the result.
4. Give brief answers to the following questions. The answer should be in the form of a short proof or an example, as appropriate.
(a) Is it true that any continuous function f in $\mathcal{C}[1,2]$ can be uniformly approximated by a sequence of even polynomials, and also by a sequence of odd polynomials?

Solution. Yes. The function $f(\sqrt{x})$ is continuous on $[1,2]$, hence by Weierstrass's approximation theorem there is a polynomial p that is approximates it arbitrarily closely in sup norm. This implies that f is approximated by the even polynomial $p\left(x^{2}\right)$. In order to approximate f by an odd polynomial, note that the continuous function $f(x) / x$ can be approximated by an even polynomial by the first part of this problem.
(b) Would your answer to part (a) change if f lies in $\mathcal{C}[-1,2]$?

Solution. The answer would change, and the statement of part (a) is no longer true. Since even polynomials do not separate the points x and $-x$, a function such as $\sin x$ would not be approximable by even polynomials. On the other hand, odd polynomials must vanish at zero, hence $\cos x$ cannot be approximated by odd polynomials.
(c) Let $\left\{f_{n}: n \geq 1\right\}$ be a sequence in $\mathcal{C}[a, b]$ with $\left\|f_{n}\right\|_{\infty} \leq 1$ for all n. Define

$$
F_{n}(x)=\int_{a}^{x} f_{n}(t) d t
$$

Does $\left\{F_{n}\right\}$ have a uniformly convergent subsequence?

Solution. Yes. The set $\left\{F_{n}\right\}$ is uniformly bounded by $(b-a)$ (using the bound on $\left.\left\|f_{n}\right\|_{\infty}\right)$ and consists of Lipschitz functions with Lipschitz constant 1,

$$
\left|F_{n}(x)-F_{n}(y)\right|=\left|\int_{x}^{y} f_{n}(t) d t\right| \leq|x-y|
$$

hence equicontinuous. By the Arzela-Ascoli theorem, this collection of functions is relatively compact in $\mathcal{C}[a, b]$, hence admits a uniformly convergent subsequence.
(d) Can a sequence of Riemann integrable functions on $[a, b]$ converge pointwise to a nonintegrable function?
Solution. Yes. Let $\mathbb{Q}=\left\{q_{1}, q_{2}, \cdots, q_{n}, \cdots\right\}$, and set $f_{n}=\chi_{\left\{q_{1}, \cdots, q_{n}\right\}}$. Each f_{n} is Riemann-integrable (with integral 0), and converges pointwise to $\chi_{\mathbb{Q}}$ which is not.
(e) Consider the space $\mathcal{C}_{0}(\mathbb{R})$ of all continuous functions "vanishing at infinity"

$$
\mathcal{C}_{0}(\mathbb{R})=\left\{f \in \mathcal{C}(\mathbb{R}): \lim _{|x| \rightarrow \infty} f(x)=0\right\}
$$

endowed with the sup norm. Is this space separable?
Solution. Yes, the space is separable. For each $N \geq 1$, let \mathcal{G}_{N} denote the space of polygonal functions on $[-N, N]$ with rational nodes which vanish on $|x| \geq N$. We have proved in class that each \mathcal{G}_{N} is countable. Further given any $g \in \mathcal{C}[-N, N]$ such that $|g(\pm N)|<\kappa$, we can use the usual uniform continuity argument to find $G \in \mathcal{G}_{N}$ such that $\sup _{|x| \leq N}|g(x)-G(x)|<\kappa$.
We claim that the countable union of these sets $\mathcal{G}=\bigcup_{N=1}^{\infty} \mathcal{G}_{N}$, which is countable, is dense in $\mathcal{C}_{0}(\mathbb{R})$. To see this fix $\epsilon>0$ and any $f \in \mathcal{C}_{0}(\mathbb{R})$. Now choose N such that $|f(x)|<\epsilon$ for $|x| \geq N$. Then pick $G \in \mathcal{G}_{N}$ such that G approximates f restricted to $[-N, N]$ in the sense described above, i.e., $\sup _{|x| \leq N}|f(x)-G(x)|<\epsilon$. Combining the two inequalities we get that $\|f-G\|_{\infty}=\max \left[\sup _{|x| \leq N}|f(x)-G(x)|, \sup _{|x| \geq N}|f(x)|\right]<$ ϵ, as desired.

