Midterm Review - Math 321, Spring 2015

1. Give an example of an equicontinuous family of non-constant functions that is not totally bounded.

Sketch of solution. The function class $\operatorname{Lip}_{K}[0,1] \backslash\{$ constant functions $\}$ for any fixed K provides an example. This family is equicontinuous because the continuity parameter δ can be chosen to be ϵ / K independent of the functions in this class. On the other hand, any totally bounded set must be bounded, whereas $\operatorname{Lip}_{K}([0,1])$ contains the unbounded collection of all functions of the form $x+C$, with C an arbitrary real number.
2. Find a uniformly convergent sequence of polynomials whose derivatives are not uniformly convergent.
Sketch of solution. The sequence $p_{k}(x)=x^{k+1} /(k+1)$ is uniformly convergent because $\left\|p_{K}\right\|_{\infty} \leq \frac{1}{k+1} \rightarrow 0$. On the other hand, $p_{k}^{\prime}(x)=x^{k}$, which converges uniformly to the function q which takes the value 1 at $x=1$ and is zero elsewhere. Since each p_{k}^{\prime} is continuous and q is not, the sequence $\left\{p_{k}^{\prime}\right\}$ cannot be uniformly convergent.
3. Let α be continuous and non-decreasing (I forgot to write this down on the board - sorry about that). Given $f \in \mathcal{R}_{\alpha}[a, b]$ and $\epsilon>0$ does there exist a step function g such that $\int_{a}^{b}|f-g| d \alpha<\epsilon$?
Sketch of solution. Since $f \in \mathcal{R}_{\alpha}[a, b]$, by Riemann's condition there exists a partition $P=$ $\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$ such that

$$
\begin{equation*}
U_{\alpha}(f ; P)-L_{\alpha}(f ; P)=\sum_{i=1}^{n} \omega\left(f ; I_{i}\right) \omega\left(\alpha ; I_{i}\right)<\epsilon, \quad \text { where } I_{i}=\left[x_{i-1}, x_{i}\right] \tag{1}
\end{equation*}
$$

and $\omega(f ; I)$ denotes the oscillation of f on I as defined in class. Set g to be the step function defined by $g(x)=f\left(x_{i}\right)$ if $x \in\left[x_{i-1}, x_{i}\right)$. We will prove shortly that $g \in \mathcal{R}_{\alpha}[a, b]$. Assuming this, we have that $|f-g| \in \mathcal{R}_{\alpha}[a, b]$, since $\mathcal{R}_{\alpha}[a, b]$ is a vector space and a lattice. Now,

$$
\int_{a}^{b}|f-g| d \alpha=\sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}}|f-g| d \alpha \leq \sum_{i=1}^{n}\left|f(x)-f\left(t_{i}\right)\right| d \alpha \leq \sum_{i=1}^{n} \omega\left(f ; I_{i}\right) \omega\left(\alpha ; I_{i}\right)<\epsilon
$$

where the last step follows from (1).
It remains to show that $g \in \mathcal{R}_{\alpha}[a, b]$. We will apply Riemann's condition again. Since α is continuous (hence uniformly continuous) there exists for any $\kappa>0$, some $\delta>0$ such that $\omega(\alpha ; I)<\frac{\kappa}{2 n\|f\|_{\infty}}$ for all intervals I of length $<\delta$. We pick a partition Q of $[a, b]$ generated by subintervals of the form $J_{i}=x_{i}+\left[-\frac{\delta}{3}, \frac{\delta}{3}\right]$. Since f is constant on all other subintervals of this partition, these intervals do not contribute to $U_{\alpha}(g ; Q)-L_{\alpha}(g ; Q)$. Thus,

$$
U_{\alpha}(g ; Q)-L_{\alpha}(g ; Q) \leq \sum_{i=1}^{n}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right| \omega\left(\alpha ; J_{i}\right)<\frac{\kappa}{2 n| | f \|_{\infty}} \sum_{i=1}^{n}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right| \leq \kappa
$$

4. Let $\mathcal{S}[0,1] \subseteq \mathcal{B}[0,1]$ be the space of step functions with finitely many jumps. Show that $\mathcal{C}[0,1] \subseteq \overline{\mathcal{S}[0,1]}$. Does there exist a discontinuous function in $\overline{\mathcal{S}[0,1]} \backslash \mathcal{S}[0,1]$?
Sketch of solution. If $f \in \mathcal{C}[0,1]$ and $\epsilon>0$, let $\delta>0$ be such that $|f(x)-f(y)|<\epsilon$ whenever $|x-y|<\delta$. Let $P=\left\{a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b\right\}$ be a uniform partition of $[0,1]$ into subintervals of length $\frac{\delta}{2}$. Define g be the step function that takes the value $f\left(x_{i-1}\right)$ on the interval $I_{i}=\left[x_{i-1}, x_{i}\right)$ and the value $f\left(x_{n-1}\right)$ at $x=b$. Then $\|f-g\|_{\infty} \leq \sup _{1 \leq i \leq n} \sup _{x \in I_{i}}\left|f(x)-f\left(x_{i-1}\right)\right|<\epsilon$, as claimed.

Yes. Consider the function

$$
f(x)= \begin{cases}x & \text { if } 0 \leq x<\frac{1}{2} \\ x+1 & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}
$$

Approximate each piece of f by step functions.

