Math 300, Section 202, Spring 2015

1. Find the limit of the function $f(z) = (z/\bar{z})^2$, if it exists, as z tends to zero. If you think the limit does not exist, explain your reasoning for this conclusion.

Solution. If $z \to 0$ along the line y = mx, then z = x + imx = x(1 + im), $\overline{z} = x - imx = x(1 - im)$, hence

$$f(z) = f(x + imx) = \left(\frac{x(1 + im)}{x(1 - im)}\right)^2 = \frac{(1 - m^2) + 2im}{(1 - m^2) - 2im}.$$

This last quantity depends on m. For example, it is 1 if m = 0, i.e., when $z \to 0$ along the x-axis. The value is $(-3 + 4im)/(-3 - 4im) \neq 1$ if m = 2. Since the limiting value of f depends on the angle of approach, $\lim_{z\to 0} f(z)$ does not exist.

Caution! This problem is not about the differentiability of the function f, so please do not use the dependence on \overline{z} to deduce that the limit does not exist. \Box

2. Describe geometrically the collection of points z satisfying the equation |z-1| = |z+i|. Sketch this set of points in the complex plane.

Solution. Recall that $|z - z_0|$ is the distance of the point z from z_0 . Thus the equation |z - 1| = |z + i| represents all points z which are equidistant from 1 and -i. Such points lie of the perpendicular bisector of the line segment joining 1 and -i. Thus the collection of z satisfying the equation is the infinite line passing through the point (0,0) with slope -1.

An alternative strategy: You could also try to simplify the equation $(x - 1)^2 + y^2 = x^2 + (y + 1)^2$.

3. Express the complex number $(-1+i)^7$ in the form a+ib.

Solution. We write -1 + i in polar form: $-1 + i = \sqrt{2}e^{\frac{3\pi i}{4}}$. Therefore

$$(-1+i)^7 = (\sqrt{2})^7 e^{\frac{21\pi i}{4}} = 8\sqrt{2}e^{5\pi i + \frac{\pi i}{4}} = -8\sqrt{2}\frac{1+i}{\sqrt{2}} = -8(1+i).$$

4. Decide whether the set $\{z : 0 \le \arg(z) \le \frac{\pi}{4}\}$ is bounded. Give reasons for your answer.

Solution. The set $\{z : 0 \le \arg(z) \le \frac{\pi}{4}\}$ is the infinite triangular region in the first quadrant bounded by the lines y = 0 and y = x. This region cannot be contained within a ball of any finite radius, and is hence unbounded.

5. Describe the domain of definition of the function $f(z) = z/(z + \overline{z})$.

Solution. The functions z and $z + \overline{z}$ are well-defined on the whole complex plane. Their ratio is defined whenever the denominator is nonzero. But $z + \overline{z} = 0$ if and only if $z = -\overline{z}$, i.e., x + iy = -x + iy or $x = \operatorname{Re}(z) = 0$. Therefore the domain of definition of f is $\{z \in \mathbb{C} : \operatorname{Re}(z) \neq 0\}$.

6. Find and sketch the images of the hyperbolas

$$x^2 - y^2 = -1$$
 and $xy = -2$

under the transformation $w = z^2 = (x + iy)^2$.

Solution. Observe that

$$z^{2} = (x + iy)^{2} = (x^{2} - y^{2}) + 2ixy = u + iv,$$

so the set of z = x + iy with $x^2 - y^2 = -1$ maps to u + iv = -1 + 2ixy, which is contained in the vertical line u = -1 in the (u, v) plane. Conversely, given any point of the form -1 + ik on this line, there exist values of (x, y) satisfying

$$x^2 - y^2 = -1 \qquad \text{and} \qquad 2xy = k.$$

This can be seen by substituting y = k/(2x) from the second equation into the first, obtaining a quadratic equation in x^2 , namely

$$x^{2} - \left(\frac{k}{2x}\right)^{2} = -1,$$
 or $4x^{4} + 4x^{2} - k^{2} = 0.$

The last equation has a non-negative solution $x^2 = (-4 + \sqrt{16 + 16k^2})/8$. Thus the image of the hyperbola $x^2 - y^2 = -1$ under the squaring map is the entire line u = -1.

Similarly, the set of z = x + iy with xy = -2 maps to $p + iq = x^2 - y^2 - 4i$ which is a point on the horizontal line q = -4 in the (p,q) plane. As above, one can show that every point k - 4i on this line is in fact the image of some (x, y) on the hyerbola xy = -2. To see this, we need to show that there exist (x, y) that satisfy the two equations

$$xy = -2 \qquad x^2 - y^2 = k.$$

Upon eliminating y, this reduces to solving the equation $x^4 - kx^2 - 4 = 0$, which admits a real solution in x. Thus the image of the hyperbola in the entire line q = -4.

7. Show that the function $f(z) = x^2 + iy^2$ is differentiable at the origin but analytic nowhere.

Solution. Set $u(x, y) = x^2$ and $v(x, y) = y^2$. Then $u_x = 2x$, $u_y = v_x 0$ and $v_y = 2y$. Thus there is no open set on which the Cauchy-Riemann equations hold. Therefore f is not analytic on any open set in the complex plane.

We will now show that f is differentiable at the origin and that f'(0) = 0.

$$\left|\lim_{(x,y)\to(0,0)}\frac{f(x+iy)-0}{x+iy}\right| = \lim_{(x,y)\to(0,0)}\left|\frac{x^2+iy^2}{x+iy}\right| = \lim_{(x,y)\to(0,0)}\frac{\sqrt{x^4+y^2}}{\sqrt{x^2+y^2}}$$

Since the expression above is symmetric in x and y, we may assume without loss of generality that $|x| \ge |y|$. With this assumption, we see that

$$\frac{\sqrt{x^4 + y^2}}{\sqrt{x^2 + y^2}} \le \frac{2x^4}{x^2} = 2x^2 \to 0$$

hence the limit exists, and its value is zero.

8. Find the harmonic conjugate of the function $u(x, y) = y^3 - 3x^2y$ if it exists. If the answer is yes, determine the analytic function f whose real part is u.

Solution. If v is the harmonic conjugate of u, then by definition f = u + iv is analytic. Therefore u, v must satisfy the Cauchy-Riemann equations

$$u_x = -6xy = v_y$$
 and $u_y = 3y^2 - 3x^2 = -v_x$.

This implies that $v = -3xy^2 + A(x) = -3xy^2 + x^3 + B(y)$. Thus $v = -3xy^2 + x^3 + C$, where C is an arbitrary constant.

Notice that if f = u + iv, then $f(x, 0) = u(x, 0) + iv(x, 0) = i(x^3 + C)$. This suggests the possibility that $f(z) = i(z^3 + C)$, which one can now easily verify:

$$f(z) = y^3 - 3x^2y + i(-3xy^2 + x^3 + C) = i(z^3 + C).$$

9. State whether each of the following statements is true or false. If the statement is true, give a short proof of it. If not, give a counterexample to show that it is false.

(a) The function $f(z) = e^z$ is harmonic.

Solution. True. The function f is entire, i.e., satisfies the Cauchy-Riemann equations. Since Laplace's equation follows from the Cauchy-Riemann equations, f is harmonic.

(b) $|(2\bar{z}+5)(\sqrt{2}-i)| = \sqrt{3}|2z+5|$.

Solution. True. $|(2\bar{z}+5)(\sqrt{2}-i)| = |(2\bar{z}+5)| \times |(\sqrt{2}-i)| = \sqrt{3}|(2\bar{z}+5)| = \sqrt{3}|(2\bar{z}+5)| = \sqrt{3}|2z+5|.$

(c) There exists a complex number z_0 whose fourth roots z_1, z_2, z_3, z_4 have the property that

$$\arg(z_1) = \frac{\pi}{4}, \quad \arg(z_2) = \frac{\pi}{2}, \quad \arg(z_3) = \frac{2\pi}{3}, \quad \arg(z_4) = \pi.$$

Solution. False. The fourth roots of any complex number are equispaced points on a circle centred at the origin. The argument of each root has to be separated from that of its nearest neighbour by $\pi/2$. This is not the case here.

(d) The equation $(z^2 + z + 1)e^z = 0$ has exactly two complex roots.

Solution. True. $e^z = e^x(\cos y + i \sin y)$ has no zero in \mathbb{C} , so the equation reduces to finding the roots of the quadratic polynomial $z^2 + z + 1$. By the fundamental theorem of algebra, this polynomial has exactly two complex roots.

(e) If a rational function R has a pole at the point a, then then residue of R at a must be a nonzero complex number.

Solution. False. The function $R(z) = 1/z^2$ has a pole at z = 0, but its residue at that point is 0.