Review worksheet for Midterm 1

Math 300, Section 202, Spring 2015

1. Find the limit of the function $f(z)=(z / \bar{z})^{2}$, if it exists, as z tends to zero. If you think the limit does not exist, explain your reasoning for this conclusion.
Solution. If $z \rightarrow 0$ along the line $y=m x$, then $z=x+i m x=x(1+i m), \bar{z}=x-i m x=$ $x(1-i m)$, hence

$$
f(z)=f(x+i m x)=\left(\frac{x(1+i m)}{x(1-i m)}\right)^{2}=\frac{\left(1-m^{2}\right)+2 i m}{\left(1-m^{2}\right)-2 i m}
$$

This last quantity depends on m. For example, it is 1 if $m=0$, i.e., when $z \rightarrow 0$ along the x-axis. The value is $(-3+4 i m) /(-3-4 i m) \neq 1$ if $m=2$. Since the limiting value of f depends on the angle of approach, $\lim _{z \rightarrow 0} f(z)$ does not exist.

Caution! This problem is not about the differentiability of the function f, so please do not use the dependence on \bar{z} to deduce that the limit does not exist.
2. Describe geometrically the collection of points z satisfying the equation $|z-1|=$ $|z+i|$. Sketch this set of points in the complex plane.

Solution. Recall that $\left|z-z_{0}\right|$ is the distance of the point z from z_{0}. Thus the equation $|z-1|=|z+i|$ represents all points z which are equidistant from 1 and $-i$. Such points lie of the perpendicular bisector of the line segment joining 1 and $-i$. Thus the collection of z satisfying the equation is the infinite line passing through the point $(0,0)$ with slope -1 .

An alternative strategy: You could also try to simplify the equation $(x-1)^{2}+y^{2}=$ $x^{2}+(y+1)^{2}$.
3. Express the complex number $(-1+i)^{7}$ in the form $a+i b$.

Solution. We write $-1+i$ in polar form: $-1+i=\sqrt{2} e^{\frac{3 \pi i}{4}}$. Therefore

$$
(-1+i)^{7}=(\sqrt{2})^{7} e^{\frac{21 \pi i}{4}}=8 \sqrt{2} e^{5 \pi i+\frac{\pi i}{4}}=-8 \sqrt{2} \frac{1+i}{\sqrt{2}}=-8(1+i)
$$

4. Decide whether the set $\left\{z: 0 \leq \arg (z) \leq \frac{\pi}{4}\right\}$ is bounded. Give reasons for your answer.
Solution. The set $\left\{z: 0 \leq \arg (z) \leq \frac{\pi}{4}\right\}$ is the infinite triangular region in the first quadrant bounded by the lines $y=0$ and $y=x$. This region cannot be contained within a ball of any finite radius, and is hence unbounded.

5. Describe the domain of definition of the function $f(z)=z /(z+\bar{z})$.

Solution. The functions z and $z+\bar{z}$ are well-defined on the whole complex plane. Their ratio is defined whenever the denominator is nonzero. But $z+\bar{z}=0$ if and only if $z=-\bar{z}$, i.e., $x+i y=-x+i y$ or $x=\operatorname{Re}(z)=0$. Therefore the domain of definition of f is $\{z \in \mathbb{C}: \operatorname{Re}(z) \neq 0\}$.

6. Find and sketch the images of the hyperbolas

$$
x^{2}-y^{2}=-1 \quad \text { and } \quad x y=-2
$$

under the transformation $w=z^{2}=(x+i y)^{2}$.
Solution. Observe that

$$
z^{2}=(x+i y)^{2}=\left(x^{2}-y^{2}\right)+2 i x y=u+i v
$$

so the set of $z=x+i y$ with $x^{2}-y^{2}=-1$ maps to $u+i v=-1+2 i x y$, which is contained in the vertical line $u=-1$ in the (u, v) plane. Conversely, given any point of the form $-1+i k$ on this line, there exist values of (x, y) satisfying

$$
x^{2}-y^{2}=-1 \quad \text { and } \quad 2 x y=k .
$$

This can be seen by substituting $y=k /(2 x)$ from the second equation into the first, obtaining a quadratic equation in x^{2}, namely

$$
x^{2}-\left(\frac{k}{2 x}\right)^{2}=-1, \quad \text { or } \quad 4 x^{4}+4 x^{2}-k^{2}=0
$$

The last equation has a non-negative solution $x^{2}=\left(-4+\sqrt{16+16 k^{2}}\right) / 8$. Thus the image of the hyperbola $x^{2}-y^{2}=-1$ under the squaring map is the entire line $u=-1$.

Similarly, the set of $z=x+i y$ with $x y=-2$ maps to $p+i q=x^{2}-y^{2}-4 i$ which is a point on the horizontal line $q=-4$ in the (p, q) plane. As above, one can show that every point $k-4 i$ on this line is in fact the image of some (x, y) on the hyerbola $x y=-2$. To see this, we need to show that there exist (x, y) that satisfy the two equations

$$
x y=-2 \quad x^{2}-y^{2}=k .
$$

Upon eliminating y, this reduces to solving the equation $x^{4}-k x^{2}-4=0$, which admits a real solution in x. Thus the image of the hyperbola in the entire line $q=-4$.
7. Show that the function $f(z)=x^{2}+i y^{2}$ is differentiable at the origin but analytic nowhere.

Solution. Set $u(x, y)=x^{2}$ and $v(x, y)=y^{2}$. Then $u_{x}=2 x, u_{y}=v_{x} 0$ and $v_{y}=2 y$. Thus there is no open set on which the Cauchy-Riemann equations hold. Therefore f is not analytic on any open set in the complex plane.

We will now show that f is differentiable at the origin and that $f^{\prime}(0)=0$.

$$
\left|\lim _{(x, y) \rightarrow(0,0)} \frac{f(x+i y)-0}{x+i y}\right|=\lim _{(x, y) \rightarrow(0,0)}\left|\frac{x^{2}+i y^{2}}{x+i y}\right|=\lim _{(x, y) \rightarrow(0,0)} \frac{\sqrt{x^{4}+y^{2}}}{\sqrt{x^{2}+y^{2}}} .
$$

Since the expression above is symmetric in x and y, we may assume without loss of generality that $|x| \geq|y|$. With this assumption, we see that

$$
\frac{\sqrt{x^{4}+y^{2}}}{\sqrt{x^{2}+y^{2}}} \leq \frac{2 x^{4}}{x^{2}}=2 x^{2} \rightarrow 0
$$

hence the limit exists, and its value is zero.
8. Find the harmonic conjugate of the function $u(x, y)=y^{3}-3 x^{2} y$ if it exists. If the answer is yes, determine the analytic function f whose real part is u.

Solution. If v is the harmonic conjugate of u, then by definition $f=u+i v$ is analytic. Therefore u, v must satisfy the Cauchy-Riemann equations

$$
u_{x}=-6 x y=v_{y} \quad \text { and } \quad u_{y}=3 y^{2}-3 x^{2}=-v_{x}
$$

This implies that $v=-3 x y^{2}+A(x)=-3 x y^{2}+x^{3}+B(y)$. Thus $v=-3 x y^{2}+x^{3}+C$, where C is an arbitrary constant.

Notice that if $f=u+i v$, then $f(x, 0)=u(x, 0)+i v(x, 0)=i\left(x^{3}+C\right)$. This suggests the possibility that $f(z)=i\left(z^{3}+C\right)$, which one can now easily verify:

$$
f(z)=y^{3}-3 x^{2} y+i\left(-3 x y^{2}+x^{3}+C\right)=i\left(z^{3}+C\right)
$$

9. State whether each of the following statements is true or false. If the statement is true, give a short proof of it. If not, give a counterexample to show that it is false.
(a) The function $f(z)=e^{z}$ is harmonic.

Solution. True. The function f is entire, i.e., satisfies the Cauchy-Riemann equations. Since Laplace's equation follows from the Cauchy-Riemann equations, f is harmonic.
(b) $|(2 \bar{z}+5)(\sqrt{2}-i)|=\sqrt{3}|2 z+5|$.

Solution. True. $|(2 \bar{z}+5)(\sqrt{2}-i)|=|(2 \bar{z}+5)| \times|(\sqrt{2}-i)|=\sqrt{3}|(2 \bar{z}+5)|=$ $\sqrt{3}|\overline{(2 \bar{z}+5)}|=\sqrt{3}|2 z+5|$.
(c) There exists a complex number z_{0} whose fourth roots $z_{1}, z_{2}, z_{3}, z_{4}$ have the property that

$$
\arg \left(z_{1}\right)=\frac{\pi}{4}, \quad \arg \left(z_{2}\right)=\frac{\pi}{2}, \quad \arg \left(z_{3}\right)=\frac{2 \pi}{3}, \quad \arg \left(z_{4}\right)=\pi
$$

Solution. False. The fourth roots of any complex number are equispaced points on a circle centred at the origin. The argument of each root has to be separated from that of its nearest neighbour by $\pi / 2$. This is not the case here.
(d) The equation $\left(z^{2}+z+1\right) e^{z}=0$ has exactly two complex roots.

Solution. True. $e^{z}=e^{x}(\cos y+i \sin y)$ has no zero in \mathbb{C}, so the equation reduces to finding the roots of the quadratic polynomial $z^{2}+z+1$. By the fundamental theorem of algebra, this polynomial has exactly two complex roots.
(e) If a rational function R has a pole at the point a, then then residue of R at a must be a nonzero complex number.
Solution. False. The function $R(z)=1 / z^{2}$ has a pole at $z=0$, but its residue at that point is 0 .

