Math 300 Midterm 2 Solutions

1. (a) Express the principal value of $(1-i)^{4i}$ in the form a+ib.

Solution.

$$(1 - i)^{4i} = e^{4i \operatorname{Log}(1 - i)}$$

= $e^{4i(\log \sqrt{2} - i\pi/4)}$
= $e^{\pi + i \log 4}$
= $e^{\pi} \cos(\log 4) + ie^{\pi} \sin(\log 4)$

(b) Evaluate the contour integral

$$\int_C \cos\left(\frac{z}{2}\right) \, dz$$

where C is an arc of a parabola starting from its vertex at the origin and ending at $\pi + 2i$. Express your answer in the form a + ib.

Solution.

$$\int_C \cos\left(\frac{z}{2}\right) dz = 2\sin\left(\frac{z}{2}\right) \Big|_0^{\pi+2i}$$
$$= 2\sin\left(\frac{\pi+2i}{2}\right) - 2\sin\left(\frac{0}{2}\right)$$
$$= 2\sin(\pi/2+i)$$
$$= 2\sin(\pi/2)\cos i + 2\cos(\pi/2)\sin i$$
$$= 2\cos i$$
$$= 2\cosh 1$$
$$= e + \frac{1}{e}$$

-	-	-	-	7

2. Determine with complete justification the image of the function

$$f(z) = \frac{1}{z^4} - 1$$

as z ranges in the exterior D of the unit disc. i.e., $D = \{z \in \mathbb{C} : |z| > 1\}$. Sketch the image set and use it to define an analytic branch of the function $\log f(z)$.

Solution. We can parametrize $z \in D$ as $z = re^{i\theta}$, with r > 1 and $0 \le \theta \le 2\pi$. For every fixed r, the complex numbers $z^{-4} = r^{-4}e^{4i\theta}$ trace out a circle C_r centred at the origin of radius r^{-4} . As r ranges in the interval $(1, \infty)$, r^{-4} covers all positive numbers < 1. Thus we obtain that

$$\{z^{-4} : z \in D\} = \bigcup_{r>1} C_r = \{v \in \mathbb{C} : v \neq 0, |v| < 1\}.$$

Finally, translating left by one unit gives

Image
$$(f) = \{z^{-4} - 1 : z \in D\} = \{w : w \neq -1, |w + 1| < 1\}.$$

In other words, the image set is the open disc of unit radius centred at -1 and punctured at this point.

Since the image set avoids the positive real line, we can use this line as a branch cut. An analytic branch of $\log f(z)$ may therefore be defined by $\log_0(f(z))$, where

$$\log_0(w) = |w| + i \arg(w), \quad \text{where } \arg(w) \in (0, 2\pi).$$

Other branch cuts that are disjoint from the image set are also possible.

3. (a) Write down a parametrization of the square Γ with vertices at 0, 1, 1+i and i, traversed anticlockwise in that order.

Solution. $\Gamma_1 : z = t$, where $0 \le t \le 1$. $\Gamma_2 : z = 1 + ti$, where $0 \le t \le 1$. $\Gamma_3 : z = i + 1 - t$, where $0 \le t \le 1$. $\Gamma_4 : z = i - ti$, where $0 \le t \le 1$.

(b) Use the parametrization in part (a) to evaluate the integral

$$\int_{\Gamma} \pi e^{\pi \overline{z}} \, dz.$$

Here \overline{z} denotes the complex conjugate of z.

Solution.

$$\begin{split} &\int_{\Gamma} \pi e^{\pi \overline{z}} \, dz. \\ &= \int_{0}^{1} \pi e^{\pi t} + i\pi e^{\pi (1-ti)} - \pi e^{\pi (1-t-i)} - i\pi e^{\pi (ti-i)} dt \\ &= e^{\pi t} - e^{\pi} e^{-\pi ti} - e^{\pi} e^{-\pi t} + e^{\pi ti} \Big|_{0}^{1} \\ &= e^{\pi} + e^{\pi} - 1 - 1 - 1 + e^{\pi} + e^{\pi} - 1 \\ &= 4(e^{\pi} - 1) \end{split}$$

г		п
L		1
L		1
_		_

4. Find all roots of the equation $\sinh z = i$.

Solution.

$$\sinh z = i$$

$$\frac{e^z - e^{-z}}{2} = i$$

$$e^z - e^{-z} = 2i$$

$$e^{2z} - 2ie^z - 1 = 0$$

$$(e^z - i)^2 = 0$$

$$e^z = i$$

$$z = \left(\frac{\pi}{2} + 2k\pi\right)i, \text{ where k is any integer.}$$

- 5. For each of the statements below, indicate whether they are true or false.
 - (a) Any loop in $D = \{z \in \mathbb{C} : |Im(z)| \le 1\} \setminus \{z \in \mathbb{R} : z \le 0\}$ can be continuously deformed to a point.

Solution. The statement is true. The domain D has an infinite slit but no holes, and is hence simply connected. By definition of simple connectivity, any closed loop can therefore be deformed into a point. (b) Let γ be the circle centred at 2 of radius 1 lying in the punctured plane $D = \mathbb{C} \setminus \{0\}$. If f is an analytic function on D with the property that

$$\int_{\gamma} f(z) \, dz = 0,$$

then f must have an analytic antiderivative on D.

Solution. The statement is false. For example, f(z) = 1/z is analytic on D and its integral over γ is zero. The last statement follows from Cauchy's theorem, since γ is contained in the simply connected domain $D' = \{z : |z - 2| < \frac{3}{2}\}$ on which f is analytic. However, f does not admit an analytic antiderivative on D; if it did, its integral over any closed loop in D would have to be zero. But we have seen that f integrated over any circle centred at the origin (traversed once in the anticlockwise direction) is $2\pi i$.

(c) Let f(z) = z, the complex conjugate of z. If C₁ and C₂ are any two contours in a domain D with common endpoints, then one can conclude from the "independence of path" theorem that

$$\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz.$$

Solution. The statement is false. The "independence of path" theorem applies only to analytic functions, and $f(z) = \overline{z}$ is analytic nowhere. In particular, if one chooses C_1 to be the constant curve 1, and C_2 to be the unit circle centred at 0, then both C_1 and C_2 have common start and endpoints; however,

$$\int_{C_1} f(z) dz = 0, \quad \text{and} \quad \int_{C_2} f(z) dz = 2\pi i.$$

(d) There does not exist any analytic branch of the function $f(z) = z^i$ on the domain

$$D = \mathbb{C} \setminus \left\{ z = x + iy : x \ge 0, \ y = x^2 \right\}.$$

Solution. The statement is false - there does exist such a branch, namely

$$\mathcal{L}(z) = |z| + i \arg(z), \quad \text{where, for } |z| = r, \ \arg(z) \in (\theta_r, \theta_r + 2\pi).$$

Here θ_r is a solution (continuous in r) of the equation $\sin \theta_r = r \cos^2 \theta_r$.

(e) The integral of any polynomial over any closed contour is zero.

Solution. The statement is true. Any polynomial P of the form

$$P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$

admits an analytic antiderivative

$$Q(z) = a_0 z + a_1 \frac{z^2}{2} + a_2 \frac{z^3}{3} + \dots + a_n \frac{z^{n+1}}{n+1}.$$

Hence by the fundamental theorem for contour integrals, the integral of ${\cal P}$ over any closed contour is zero.