Math 300 Midterm 2 Solutions

1. (a) Express the principal value of $(1-i)^{4 i}$ in the form $a+i b$.

Solution.

$$
\begin{aligned}
(1-i)^{4 i} & =e^{4 i \log (1-i)} \\
& =e^{4 i(\log \sqrt{2}-i \pi / 4)} \\
& =e^{\pi+i \log 4} \\
& =e^{\pi} \cos (\log 4)+i e^{\pi} \sin (\log 4)
\end{aligned}
$$

(b) Evaluate the contour integral

$$
\int_{C} \cos \left(\frac{z}{2}\right) d z
$$

where C is an arc of a parabola starting from its vertex at the origin and ending at $\pi+2$. Express your answer in the form $a+i b$.

Solution.

$$
\begin{aligned}
\int_{C} \cos \left(\frac{z}{2}\right) d z & =\left.2 \sin \left(\frac{z}{2}\right)\right|_{0} ^{\pi+2 i} \\
& =2 \sin \left(\frac{\pi+2 i}{2}\right)-2 \sin \left(\frac{0}{2}\right) \\
& =2 \sin (\pi / 2+i) \\
& =2 \sin (\pi / 2) \cos i+2 \cos (\pi / 2) \sin i \\
& =2 \cos i \\
& =2 \cosh 1 \\
& =e+\frac{1}{e}
\end{aligned}
$$

2. Determine with complete justification the image of the function

$$
f(z)=\frac{1}{z^{4}}-1
$$

as z ranges in the exterior D of the unit disc. i.e., $D=\{z \in \mathbb{C}:|z|>1\}$. Sketch the image set and use it to define an analytic branch of the function $\log f(z)$.

Solution. We can parametrize $z \in D$ as $z=r e^{i \theta}$, with $r>1$ and $0 \leq \theta \leq 2 \pi$. For every fixed r, the complex numbers $z^{-4}=r^{-4} e^{4 i \theta}$ trace out a circle C_{r} centred at the origin of radius r^{-4}. As r ranges in the interval $(1, \infty), r^{-4}$ covers all positive numbers <1. Thus we obtain that

$$
\left\{z^{-4}: z \in D\right\}=\bigcup_{r>1} C_{r}=\{v \in \mathbb{C}: v \neq 0,|v|<1\}
$$

Finally, translating left by one unit gives

$$
\operatorname{Image}(f)=\left\{z^{-4}-1: z \in D\right\}=\{w: w \neq-1,|w+1|<1\} .
$$

In other words, the image set is the open disc of unit radius centred at -1 and punctured at this point.
Since the image set avoids the positive real line, we can use this line as a branch cut. An analytic branch of $\log f(z)$ may therefore be defined by $\log _{0}(f(z))$, where

$$
\log _{0}(w)=|w|+i \arg (w), \quad \text { where } \arg (w) \in(0,2 \pi)
$$

Other branch cuts that are disjoint from the image set are also possible.
3. (a) Write down a parametrization of the square Γ with vertices at $0,1,1+i$ and i, traversed anticlockwise in that order.

Solution. $\Gamma_{1}: z=t$, where $0 \leq t \leq 1$.
$\Gamma_{2}: z=1+t i$, where $0 \leq t \leq 1$.
$\Gamma_{3}: z=i+1-t$, where $0 \leq t \leq 1$.
$\Gamma_{4}: z=i-t i$, where $0 \leq t \leq 1$.
(b) Use the parametrization in part (a) to evaluate the integral

$$
\int_{\Gamma} \pi e^{\pi \bar{z}} d z
$$

Here \bar{z} denotes the complex conjugate of z.

Solution.

$$
\begin{aligned}
& \int_{\Gamma} \pi e^{\pi \bar{z}} d z . \\
= & \int_{0}^{1} \pi e^{\pi t}+i \pi e^{\pi(1-t i)}-\pi e^{\pi(1-t-i)}-i \pi e^{\pi(t i-i)} d t \\
= & e^{\pi t}-e^{\pi} e^{-\pi t i}-e^{\pi} e^{-\pi t}+\left.e^{\pi t i}\right|_{0} ^{1} \\
= & e^{\pi}+e^{\pi}-1-1-1+e^{\pi}+e^{\pi}-1 \\
= & 4\left(e^{\pi}-1\right)
\end{aligned}
$$

4. Find all roots of the equation $\sinh z=i$.

Solution.

$$
\begin{aligned}
\sinh z & =i \\
\frac{e^{z}-e^{-z}}{2} & =i \\
e^{z}-e^{-z} & =2 i \\
e^{2 z}-2 i e^{z}-1 & =0 \\
\left(e^{z}-i\right)^{2} & =0 \\
e^{z} & =i \\
z & =\left(\frac{\pi}{2}+2 k \pi\right) i, \text { where } \mathrm{k} \text { is any integer. }
\end{aligned}
$$

5. For each of the statements below, indicate whether they are true or false.
(a) Any loop in $D=\{z \in \mathbb{C}:|\operatorname{Im}(z)| \leq 1\} \backslash\{z \in \mathbb{R}: z \leq 0\}$ can be continuously deformed to a point.

Solution. The statement is true. The domain D has an infinite slit but no holes, and is hence simply connected. By definition of simple connectivity, any closed loop can therefore be deformed into a point.
(b) Let γ be the circle centred at 2 of radius 1 lying in the punctured plane $D=\mathbb{C} \backslash\{0\}$. If f is an analytic function on D with the property that

$$
\int_{\gamma} f(z) d z=0
$$

then f must have an analytic antiderivative on D.
Solution. The statement is false. For example, $f(z)=1 / z$ is analytic on D and its integral over γ is zero. The last statement follows from Cauchy's theorem, since γ is contained in the simply connected domain $D^{\prime}=\left\{z:|z-2|<\frac{3}{2}\right\}$ on which f is analytic. However, f does not admit an analytic antiderivative on D; if it did, its integral over any closed loop in D would have to be zero. But we have seen that f integrated over any circle centred at the origin (traversed once in the anticlockwise direction) is $2 \pi i$.
(c) Let $f(z)=\bar{z}$, the complex conjugate of z. If C_{1} and C_{2} are any two contours in a domain D with common endpoints, then one can conclude from the "independence of path" theorem that

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

Solution. The statement is false. The "independence of path" theorem applies only to analytic functions, and $f(z)=\bar{z}$ is analytic nowhere. In particular, if one chooses C_{1} to be the constant curve 1 , and C_{2} to be the unit circle centred at 0 , then both C_{1} and C_{2} have common start and endpoints; however,

$$
\int_{C_{1}} f(z) d z=0, \quad \text { and } \quad \int_{C_{2}} f(z) d z=2 \pi i
$$

(d) There does not exist any analytic branch of the function $f(z)=z^{i}$ on the domain

$$
D=\mathbb{C} \backslash\left\{z=x+i y: x \geq 0, y=x^{2}\right\}
$$

Solution. The statement is false - there does exist such a branch, namely

$$
\mathcal{L}(z)=|z|+i \arg (z), \quad \text { where, for }|z|=r, \arg (z) \in\left(\theta_{r}, \theta_{r}+2 \pi\right) .
$$

Here θ_{r} is a solution (continuous in r) of the equation $\sin \theta_{r}=r \cos ^{2} \theta_{r}$.
(e) The integral of any polynomial over any closed contour is zero.

Solution. The statement is true. Any polynomial P of the form

$$
P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}
$$

admits an analytic antiderivative

$$
Q(z)=a_{0} z+a_{1} \frac{z^{2}}{2}+a_{2} \frac{z^{3}}{3}+\cdots+a_{n} \frac{z^{n+1}}{n+1} .
$$

Hence by the fundamental theorem for contour integrals, the integral of P over any closed contour is zero.

