Math 300 Midterm I Solutions

1. Find the modulus and argument for each of the complex numbers below. Give the unique value of the argument that lies in the interval $[0,2 \pi)$.
(a) $\frac{2}{i}+\frac{i}{5}$.

Solution. Note that

$$
z=\frac{2}{i}+\frac{i}{5}=\left(-2+\frac{1}{5}\right) i=-\frac{9}{5} i .
$$

Hence, $|z|=\frac{9}{5}$ and $\operatorname{Arg}(z)=\frac{3 \pi}{2}$.
(b) $\left(\frac{1+i \sqrt{3}}{2}\right)^{3600}$.

Solution. Note that

$$
w=\left(\frac{1+i \sqrt{3}}{2}\right)^{3600}=\left(e^{\pi i / 3}\right)^{3600}=e^{1200 \pi i}=1
$$

Hence, $|w|=1$ and $\operatorname{Arg}(w)=0$.
2. Find all solutions of the equation

$$
z^{4}=8 i z,
$$

and express them in the form $a+i b$ where a and b are real numbers.
Solution. $z=0$ or $z^{3}=8 i=8 e^{\pi i / 2}=8 e^{5 \pi i / 2}=8 e^{9 \pi i / 2}$.
Hence, the solutions are

$$
\begin{gathered}
z=0 \\
z=2 e^{\pi i / 6}=\sqrt{3}+i \\
z=2 e^{5 \pi i / 6}=-\sqrt{3}+i \\
z=2 e^{9 \pi i / 6}=-2 i
\end{gathered}
$$

3. Let $v(x, y)=5 x-x y+4$.
(a) Show that $v(x, y)$ is harmonic in the entire plane.

Solution. $v_{x}=5-y, v_{y}=-x, v_{x x}=0, v_{y y}=0$.
Hence $v_{x x}+v_{y y}=0+0=0$, implying $v(x, y)$ is harmonic in the entire plane.
(b) Construct an entire function $f(z)$ such that $\operatorname{Im}\{f(z)\}=v(x, y)$.

Solution. Let $f=u+i v$.
Then, $u_{x}=v_{y}=-x$, so $u=\int-x=-\frac{x^{2}}{2}+\phi(y)$.
From $u_{y}=-v_{x}=y-5$, we have $\phi^{\prime}(y)=y-5$, and so $\phi(y)=\frac{y^{2}}{2}-5 y+c$, where $c \in \mathbb{R}$ is any constant.
Choosing $c=0$, we get $f=-\frac{x^{2}}{2}+\frac{y^{2}}{2}-5 y+i(5 x-x y+4)$.
4. (a) Show that if $f(z)$ and $\overline{f(z)}$ are analytic in a domain D, then $f(z)$ is constant in D.

Solution. Suppose that $f=u=i v$ and $\bar{f}=u-i v$ are both analytic on a domain D. Then both the pairs (u, v) and $(u,-v)$ obey the Cauchy-Riemann equations:

$$
\left\{\begin{array} { l l }
{ u _ { x } = v _ { y } } \\
{ u _ { y } = - v _ { x } }
\end{array} \quad \left\{\begin{array}{ll}
u_{x} & =-v_{y} \\
u_{y} & =v_{x}
\end{array}\right.\right.
$$

Combining the equations above, we obtain that $u_{x}=u_{y}=0$ and $v_{x}=v_{y}=0$. Thus u and v are both constant functions, hence f is constant on D.
(b) Using part (a), show that $p(\bar{z})$ is not analytic in any domain of the complex plane if p is a polynomial with degree at least 1 .

Solution. We argue by contradiction. Let p be a polynomial of degree at least n; i.e., $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$, where $n \geq 1$ and the coefficients a_{j} are complex numbers. In particular, there exists at least one $j \geq 1$ such that $a_{j} \neq 0$.
Suppose if possible that $f(z)=p(\bar{z})=a_{0}+a_{1} \bar{z}+a_{2} \bar{z}^{2}+\cdots+a_{n} \bar{z}^{n}$ is analytic. On the other hand, we observe that $\overline{f(z)}=\bar{a}_{0}+\bar{a}_{1} z+\cdots+\bar{a}_{n} z^{n}$ is a polynomial of degree at least 1 (since $a_{j} \neq 0$ implies $\bar{a}_{j} \neq 0$). A polynomial function is known to be analytic on all of \mathbb{C}. Thus $f(z)$ and $\overline{f(z)}$ are both analytic. By the result of part (a), $f(z)$ must be a constant function. This means that the polynomial $\overline{f(z)}$ is a constant function, which contradicts the fact that it is assumed to be of degree 1 .
5. Find the partial fraction decomposition of

$$
R(z)=\frac{2}{z(1-z)^{2}}
$$

Solution. Let

$$
\frac{2}{z(1-z)^{2}}=\frac{A}{z}+\frac{B}{z-1}+\frac{C}{(z-1)^{2}}
$$

Then,

$$
2=A(z-1)^{2}+B z(z-1)+C z
$$

Putting $z=0$, we get $A=2$.
Putting $z=1$, we get $C=2$.

Comparing coefficient of z^{2}, we get $A+B=0$ and so $B=-2$.
Thus,

$$
\frac{2}{z(1-z)^{2}}=\frac{2}{z}-\frac{2}{z-1}+\frac{2}{(z-1)^{2}} .
$$

6. For each of the statements below, indicate whether they are true or false. If true, give a proof. If false, give a counter example.
(a) $\left|e^{-z}\right| \leq 1$ if $|z| \leq 1$.

Solution. The statement is false. The number $z=-1$ obeys $|z| \leq 1$, but $\left|e^{-z}\right|=e>$ 1.
(b) $\operatorname{Arg}(\operatorname{Re}(z))=0$ for any complex number z. Here "Arg" denotes the value of the argument that lies in the interval $(-\pi, \pi]$.

Solution. The statement is false. Nonzero real numbers have argument 0 if they are positive, and π if they are negative. For any complex number z with a negative real part x, say $z=-1+i, \operatorname{Arg}(\operatorname{Re}(z))=\operatorname{Arg}(x)=\pi$.
(c) The equation $e^{z}=-1$ has no solution in \mathbb{C}.

Solution. The statement is false. $e^{i \pi}=\cos (\pi)+i \sin (\pi)=-1$, so $z=i \pi$ is a solution.
(d) The function $f(z)=\frac{\bar{z}-1}{|z|^{2}-z}$ is rational.

Solution. Since $|z|^{2}=z \bar{z}$, the function f can be simplified as $f(z)=\frac{\bar{z}-1}{z(\bar{z}-1)}=\frac{1}{z}$ if $z \neq 1$. The function $1 / z$ is rational, being the ratio of two polynomials (the constant function 1 and the function z.
(e) $-z^{4}-1<0$ for all $z \in \mathbb{C}$.

Solution. The statement is false. If we choose z to be a square root of i, say $z=e^{i \frac{\pi}{4}}$, then $z^{4}=i^{2}=-1$, so $-z^{4}-1=1-1=0$.

