Math 300 Midterm I Solutions

- 1. Find the modulus and argument for each of the complex numbers below. Give the unique value of the argument that lies in the interval $[0, 2\pi)$.
 - (a) $\frac{2}{i} + \frac{i}{5}$.

Solution. Note that

$$z = \frac{2}{i} + \frac{i}{5} = \left(-2 + \frac{1}{5}\right)i = -\frac{9}{5}i.$$

Hence, $|z| = \frac{9}{5}$ and $\operatorname{Arg}(z) = \frac{3\pi}{2}$.

(b) $\left(\frac{1+i\sqrt{3}}{2}\right)^{3600}$.

Solution. Note that

$$w = \left(\frac{1+i\sqrt{3}}{2}\right)^{3600} = \left(e^{\pi i/3}\right)^{3600} = e^{1200\pi i} = 1$$

Hence, |w| = 1 and $\operatorname{Arg}(w) = 0$.

2. Find all solutions of the equation

$$z^4 = 8iz$$

and express them in the form a + ib where a and b are real numbers.

Solution. z = 0 or $z^3 = 8i = 8e^{\pi i/2} = 8e^{5\pi i/2} = 8e^{9\pi i/2}$. Hence, the solutions are

$$z = 0,$$

 $z = 2e^{\pi i/6} = \sqrt{3} + i,$
 $z = 2e^{5\pi i/6} = -\sqrt{3} + i,$
 $z = 2e^{9\pi i/6} = -2i.$

- 3. Let v(x, y) = 5x xy + 4.
 - (a) Show that v(x, y) is harmonic in the entire plane.

Solution. $v_x = 5 - y$, $v_y = -x$, $v_{xx} = 0$, $v_{yy} = 0$. Hence $v_{xx} + v_{yy} = 0 + 0 = 0$, implying v(x, y) is harmonic in the entire plane. \Box

(b) Construct an entire function f(z) such that $\text{Im}\{f(z)\} = v(x, y)$.

Solution. Let
$$f = u + iv$$
.
Then, $u_x = v_y = -x$, so $u = \int -x = -\frac{x^2}{2} + \phi(y)$.
From $u_y = -v_x = y - 5$, we have $\phi'(y) = y - 5$, and so $\phi(y) = \frac{y^2}{2} - 5y + c$,
where $c \in \mathbb{R}$ is any constant.
Choosing $c = 0$, we get $f = -\frac{x^2}{2} + \frac{y^2}{2} - 5y + i(5x - xy + 4)$.

4. (a) Show that if f(z) and $\overline{f(z)}$ are analytic in a domain D, then f(z) is constant in D.

Solution. Suppose that f = u = iv and $\overline{f} = u - iv$ are both analytic on a domain D. Then both the pairs (u, v) and (u, -v) obey the Cauchy-Riemann equations:

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases} \quad \begin{cases} u_x = -v_y \\ u_y = v_x. \end{cases}$$

Combining the equations above, we obtain that $u_x = u_y = 0$ and $v_x = v_y = 0$. Thus u and v are both constant functions, hence f is constant on D.

(b) Using part (a), show that $p(\overline{z})$ is not analytic in any domain of the complex plane if p is a polynomial with degree at least 1.

Solution. We argue by contradiction. Let p be a polynomial of degree at least n; i.e., $p(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n$, where $n \ge 1$ and the coefficients a_j are complex numbers. In particular, there exists at least one $j \ge 1$ such that $a_j \ne 0$. Suppose if possible that $f(z) = p(\overline{z}) = a_0 + a_1 \overline{z} + a_2 \overline{z}^2 + \cdots + a_n \overline{z}^n$ is analytic. On the other hand, we observe that $\overline{f(z)} = \overline{a_0} + \overline{a_1} z + \cdots + \overline{a_n} z^n$ is a polynomial of

degree at least 1 (since $a_j \neq 0$ implies $\overline{a_j} \neq 0$). A polynomial function is known to be analytic on all of \mathbb{C} . Thus f(z) and $\overline{f(z)}$ are both analytic. By the result of part (a), f(z) must be a constant function. This means that the polynomial $\overline{f(z)}$ is a constant function, which contradicts the fact that it is assumed to be of degree 1. \Box

5. Find the partial fraction decomposition of

$$R(z) = \frac{2}{z(1-z)^2}$$

Solution. Let

$$\frac{2}{z(1-z)^2} = \frac{A}{z} + \frac{B}{z-1} + \frac{C}{(z-1)^2}$$

Then,

$$2 = A(z-1)^2 + Bz(z-1) + Cz.$$

Putting z = 0, we get A = 2. Putting z = 1, we get C = 2. Comparing coefficient of z^2 , we get A + B = 0 and so B = -2. Thus,

$$\frac{2}{z(1-z)^2} = \frac{2}{z} - \frac{2}{z-1} + \frac{2}{(z-1)^2}.$$

- 6. For each of the statements below, indicate whether they are true or false. If true, give a proof. If false, give a counter example.
 - (a) $|e^{-z}| \le 1$ if $|z| \le 1$.

Solution. The statement is false. The number z = -1 obeys $|z| \le 1$, but $|e^{-z}| = e > 1$.

(b) $\operatorname{Arg}(\operatorname{Re}(z)) = 0$ for any complex number z. Here "Arg" denotes the value of the argument that lies in the interval $(-\pi, \pi]$.

Solution. The statement is false. Nonzero real numbers have argument 0 if they are positive, and π if they are negative. For any complex number z with a negative real part x, say z = -1 + i, $\operatorname{Arg}(\operatorname{Re}(z)) = \operatorname{Arg}(x) = \pi$.

(c) The equation $e^z = -1$ has no solution in \mathbb{C} .

Solution. The statement is false. $e^{i\pi} = \cos(\pi) + i\sin(\pi) = -1$, so $z = i\pi$ is a solution.

(d) The function $f(z) = \frac{\overline{z}-1}{|z|^2-z}$ is rational.

Solution. Since $|z|^2 = z\overline{z}$, the function f can be simplified as $f(z) = \frac{\overline{z}-1}{z(\overline{z}-1)} = \frac{1}{z}$ if $z \neq 1$. The function 1/z is rational, being the ratio of two polynomials (the constant function 1 and the function z.

(e) $-z^4 - 1 < 0$ for all $z \in \mathbb{C}$.

Solution. The statement is false. If we choose z to be a square root of i, say $z = e^{i\frac{\pi}{4}}$, then $z^4 = i^2 = -1$, so $-z^4 - 1 = 1 - 1 = 0$.