Solutions to MATH 300 Homework 8

EXERCISES 5.3

3. (e) Using the results of Prob. 2, the radius of convergence of the power series is $R=1 / L$, where

$$
L=\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\lim _{k \rightarrow \infty}\left|\frac{\frac{(3-i)^{k+1}}{(k+1)^{2}}}{\frac{(3-i)^{k}}{k^{2}}}\right|=|3-i| \lim _{k \rightarrow \infty} \frac{k^{2}}{(k+1)^{2}}=\sqrt{10} .
$$

So the circle of convergence is $|z+2|=1 / \sqrt{10}$.
5. (b) In the circle $\{z \in \mathbb{C}:|z|=1\}$,

$$
\begin{aligned}
\oint_{|z|=1} \frac{f(z)}{z^{4}} d z & =\oint_{|z|=1}\left(\frac{1}{3 z^{3}}+\frac{8}{9 z^{2}}+\frac{1}{z}+\frac{64}{81}+\frac{125}{243} z+\cdots+\frac{k^{3}}{3^{k}} z^{k-4}+\cdots\right) d z \\
& =0+0+2 \pi i+0+\cdots+0+\cdots \\
& =2 \pi i
\end{aligned}
$$

6. (a) We know from Sec. 5.2 Example 2 that the Maclaurin expansion for $\sin z$ is

$$
\sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots
$$

Then

$$
f(z)=\frac{1}{z}\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots\right)=1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\frac{z^{6}}{7!}+\cdots,
$$

for all $z \in \mathbb{C}$.
(b) Clearly, $f(z)$ has derivative for any $z \neq 0$. At $z=0$,

$$
f^{\prime}(0)=\lim _{z \rightarrow 0}\left(\frac{\sin z}{z}-1\right)=\lim _{z \rightarrow 0}\left(\frac{\sin z-z}{z}\right)=\lim _{z \rightarrow 0}(\cos z-1)=0,
$$

where the $3^{\text {rd }}$ equality results from Maclaurin expansion of $\sin z$ and $\cos z$ at $z=0$. Therefore, f has derivative in a neighbourhood of the origin, hence is analytic there.
(c) $f^{(3)}(0)=3!a_{3}=0$.
(d) $f^{(4)}(0)=4!a_{4}=4!(1 / 5!)=1 / 5$.
10. Applying Prob. 2, $\lim _{k \rightarrow \infty}\left|\frac{a_{k}}{a_{k+1}}\right|=R=\lim _{k \rightarrow \infty}\left|\frac{k a_{k}}{(k+1) a_{k+1}}\right|$.

EXERCISES 5.5

2. (b) No. Recall that the principal branch of \sqrt{z} is analytic in the slit domain $D^{*}=\mathbb{C} \backslash(-\infty, 0]$. Thus, the condition of Theorem 14 does not satisfy.
3. (b)

$$
f(z)=\frac{1}{3 z}\left[\frac{1}{1-\left(-\frac{1}{z}\right)}\right]-\frac{1}{3}\left[\frac{1}{1-\frac{z}{2}}\right]=\frac{1}{3} \sum_{j=1}^{\infty}(-1)^{j-1} z^{-j}-\frac{1}{3} \sum_{j=0}^{\infty}\left(\frac{1}{2}\right)^{j} z^{j} .
$$

6. As we already know,

$$
\cos w=\sum_{j=0}^{\infty}(-1)^{j} \frac{w^{2 j}}{(2 j)!},
$$

for all (finite) w. Therefore, the Laurent series for $z^{2} \cos \left(\frac{1}{3 z}\right)$ is

$$
\sum_{j=0}^{\infty}(-1)^{j} \frac{z^{2-2 j}}{3^{2 j}(2 j)!} .
$$

7. (b) As we know,

$$
e^{z}=\sum_{k=0}^{\infty} \frac{z^{k}}{k!} .
$$

Then

$$
\frac{1}{e^{z}-1}=\frac{1}{\sum_{k=1}^{\infty} \frac{z^{k}}{k!}}=\frac{1}{z} \frac{1}{\sum_{k=1}^{\infty} \frac{z^{k-1}}{k!}}:=\frac{1}{z} \sum_{j=0}^{\infty} a_{j} z^{j},
$$

where

$$
\left(\sum_{j=0}^{\infty} a_{j} z^{j}\right)\left(\frac{1}{\sum_{k=1}^{\infty} \frac{z^{k-1}}{k!}}\right)=1 .
$$

Therefore, comparing the coefficients gives us

$$
a_{0}=1, a_{1}+\frac{1}{2} a_{0}=0, a_{2}+\frac{1}{2} a_{1}+\frac{1}{6} a_{0}=0, \cdots
$$

Then

$$
a_{0}=1, a_{1}=-\frac{1}{2}, a_{2}=\frac{1}{12}, \cdots
$$

9. Consider the cases $j \geqslant 0$ and $j<0$. Then the series can be written as

$$
\sum_{j=-\infty}^{\infty} \frac{z^{j}}{2^{|j|}}=\sum_{j=0}^{\infty}\left(\frac{z}{2}\right)^{j}+\sum_{j=1}^{\infty} \frac{1}{(2 z)^{j}}
$$

Then in order that these geometric series converge, we need $\left|\frac{1}{2 z}\right|<1$ and $\left|\frac{z}{2}\right|<1$, whence $\frac{1}{2}<|z|<2$.

