Solutions to MATH 300 Homework 4

EXERCISES 4.1

3. By observing the equation of the ellipse, we take $x(t)=a \cos t, y(t)=$ $b \sin t$ with $0 \leqslant t \leqslant 2 \pi$. Then $z(t)=x(t)+i y(t)=a \cos t+i b \sin t, 0 \leqslant$ $t \leqslant 2 \pi$. Moreover, $z^{\prime}(t)=-a \sin t+i b \cos t$ is continuous and never vanishes on $t \in[0,2 \pi]$. Also, $z(0)=z(2 \pi)=a, z^{\prime}(0)=z^{\prime}(2 \pi)=i b$. Hence, $z(t)=x(t)+i y(t)=a \cos t+i b \sin t$ with $0 \leqslant t \leqslant 2 \pi$ gives an admissible parametrization of the ellipse.
4. The barbell-shaped contour has three components of different shapes, say, a circle γ_{1} centered at -2 and of radius 1 traversed once clockwise, a line segment γ_{2} of x-axis and another circle γ_{3} centered at 2 and of radius 1 traversed once counterclockwise. Γ_{1} starts from -1 while Γ_{3} starts from 1. In Example 1, we have already seen the admissible parametrizations for circles and straight lines. So the following functions are admissible parametrizations for γ_{1}, γ_{2}, and γ_{3}, consistent with their directions:

$$
\begin{cases}\gamma_{1}: z_{1}(t)=-2+e^{-2 \pi i t} & (0 \leqslant t \leqslant 1) \\ \gamma_{2}: z_{2}(t)=-1+t(1-(-1)) & (0 \leqslant t \leqslant 1) \\ \gamma_{3}: z_{3}(t)=2-e^{2 \pi i t} & (0 \leqslant t \leqslant 1)\end{cases}
$$

Now we rescale so that γ_{1} is traced for $0 \leqslant t \leqslant \frac{1}{3}, \gamma_{2}$ is traced for $\frac{1}{3} \leqslant t \leqslant \frac{2}{3}$, and γ_{3} is traced for $\frac{2}{3} \leqslant t \leqslant 1$. Then for γ_{1}, the range of $z_{1}(t)=-2+$ $e^{-2 \pi i t}, 0 \leqslant t \leqslant 1$ is the same as that of $z_{I}(t)=-2+e^{-6 \pi i t}, 0 \leqslant t \leqslant \frac{1}{3}$. For γ_{2}, the range of $z_{2}(t)=-1+t(1-(-1)), 0 \leqslant t \leqslant 1$ is the same as that of $z_{I I}(t)=-1+3\left(t-\frac{1}{3}\right)(1-(-1))=-1+6\left(t-\frac{1}{3}\right), \frac{1}{3} \leqslant t \leqslant \frac{2}{3}$. Also, for γ_{3}, the range of $z_{3}(t)=2-e^{2 \pi i t}, 0 \leqslant t \leqslant 1$ is the same as that of $z_{I I I}(t)=2-e^{6 \pi i\left(t-\frac{2}{3}\right)}, \frac{2}{3} \leqslant t \leqslant 1$. Therefore, we have

$$
z(t)= \begin{cases}-2+e^{-6 \pi i t} & 0 \leqslant t \leqslant \frac{1}{3}, \\ -1+6\left(t-\frac{1}{3}\right) & \frac{1}{3} \leqslant t \leqslant \frac{2}{3}, \\ 2-e^{6 \pi i\left(t-\frac{2}{3}\right)} & \frac{2}{3} \leqslant t \leqslant 1 .\end{cases}
$$

11. The function $z=z(t)=5 e^{3 i t}$ parametrizes a circle centered at the origin and of radius 5 . The circle is traversed one and a half times counterclockwise. The starting point returns to itself, which is $(5,0)$ after time $t=2 \pi / 3$. And then it starts moving around again for time $t=\pi / 3$, which is a half of the period $2 \pi / 3$. So the length of the contour is one and a half of its perimeter, i.e., $l(\Gamma)=\frac{3}{2} \cdot 2 \pi \cdot 5=15 \pi$. Or directly compute the integral expression of the length $\ell(\Gamma)=\int_{0}^{\pi}\left|15 i e^{3 i t}\right| d t=\int_{0}^{\pi} 15 d t=15 \pi$.

EXERCISES 4.2

3.(b)

$$
\begin{aligned}
& \int_{0}^{2} \frac{t}{\left(t^{2}+i\right)^{2}} d t \\
= & \int_{0}^{2} \frac{1}{\left(t^{2}+i\right)^{2}} d\left(t^{2}+i\right) \\
= & -\left.\frac{1}{2} \frac{1}{\left(t^{2}+i\right)^{2}}\right|_{0} ^{2} \\
= & \frac{-2-8 i}{17} .
\end{aligned}
$$

5. From Example 2 we know

$$
\int_{C_{r}}\left(z-z_{0}\right)^{n} d z= \begin{cases}0 & \text { for } n \neq-1 \\ 2 \pi i & \text { for } n=-1\end{cases}
$$

where $C_{r}=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=r\right\}$. Then for $C=\{z \in \mathbb{C}:|z-i|=4\}$ traversed once counterclockwise,

$$
\begin{aligned}
& \int_{C}\left[\frac{6}{(z-i)^{2}}+\frac{2}{z-i}+1-3(z-i)^{2}\right] d z \\
= & 6 \int_{C} \frac{1}{(z-i)^{2}} d z+2 \int_{C} \frac{1}{z-i} d z+\int_{C} 1 d z-3 \int_{C}(z-i)^{2} d z \\
= & 0+2 \cdot 2 \pi i+0-0 \\
= & 4 \pi i .
\end{aligned}
$$

10. According to Definition 4 we have

$$
\int_{C} \bar{z}^{2} d z=\int_{C_{1}} \bar{z}^{2} d z+\int_{C_{2}} \bar{z}^{2} d z+\int_{C_{3}} \bar{z}^{2} d z+\int_{C_{4}} \bar{z}^{2} d z
$$

where $C_{i}, i=1,2,3,4$ can be parametrized as

$$
\begin{array}{ll}
C_{1}: z_{1}(t)=t & (0 \leqslant t \leqslant 1), \\
C_{2}: z_{2}(t)=1+i t & (0 \leqslant t \leqslant 1), \\
C_{3}: z_{3}(t)=i+1-t & (0 \leqslant t \leqslant 1), \\
C_{4}: z_{4}(t)=i(1-t) & (0 \leqslant t \leqslant 1) .
\end{array}
$$

By Theorem 4 we have

$$
\begin{aligned}
& \int_{C_{1}} \bar{z}^{2} d z=\int_{0}^{1}{\overline{z_{1}(t)}}^{2} z_{1}^{\prime}(t) d t \\
& =\int_{0}^{1} t^{2} d t=\left.\frac{t^{3}}{3}\right|_{0} ^{1}=\frac{1}{3}, \\
& \int_{C_{2}} \bar{z}^{2} d z=\int_{0}^{1}{\overline{z_{2}(t)}}^{2} z_{2}^{\prime}(t) d t \\
& =\int_{0}^{1}(1-i t)^{2} i d t \\
& =i t-\frac{i t^{3}}{3}+\left.t^{2}\right|_{0} ^{1}=1+\frac{2 i}{3} \text {, } \\
& \int_{C_{3}} \bar{z}^{2} d z=\int_{0}^{1}{\overline{z_{3}}(t)}^{2} z_{3}^{\prime}(t) d t \\
& =\int_{0}^{1}-(1-t-i)^{2} d t \\
& =-\frac{t^{3}}{3}+t^{2}-i t^{2}+\left.2 i t\right|_{0} ^{1}=\frac{2}{3}+i, \\
& \int_{C_{4}} \bar{z}^{2} d z=\int_{0}^{1}{\overline{z_{4}(t)}}^{2} z_{4}^{\prime}(t) d t \\
& =\int_{0}^{1}-(t-1)^{2}(-i) d t \\
& =i \frac{t^{3}}{3}-i t^{2}+\left.i t\right|_{0} ^{1}=\frac{i}{3} \text {, }
\end{aligned}
$$

Therefore

$$
\int_{C} \bar{z}^{2} d z=\frac{1}{3}+1+\frac{2 i}{3}+\frac{2}{3}+i+\frac{i}{3}=2+2 i .
$$

12. Since on the unit circle $|z|=1, z \bar{z}=1$, it follows that $\bar{z}=\frac{1}{z}$. Therefore, the two integrals are equal.
13. (c) On the arc of the unit circle lying in the first quadrant,

$$
|\log z| \leqslant|\log 1+i \operatorname{Arg} z| \leqslant \pi / 2
$$

On the other hand, the length of the arc is $\frac{1}{4} \cdot 2 \pi \cdot 1=\pi / 2$. Hence, by Theorem 5,

$$
\left|\int_{\Gamma} \log z d z\right| \leqslant \frac{\pi^{2}}{4}
$$

EXERCISE 4.3

1. (b) Since the integrand has the antiderivative $F(z)=e^{z}$ for all z. By Theorem 6, we have

$$
\int_{\Gamma} e^{z} d z=\left.e^{z}\right|_{1} ^{-1}=e^{-1}-e=-2 \sinh 1
$$

(g) The principal branch of z^{α} is the same as that of $\log z, \mathbb{C} \backslash(-\infty, 0]$. By the discussion on p.133, we know that z^{α} has derivative $\alpha z^{\alpha} \frac{1}{z}$ on each branch, including the principal branch. Thus, using Theorem $\mathbf{6}$, we can directly compute the integral.

$$
\int_{\Gamma} z^{1 / 2} d z=\left.\frac{2}{3} z^{\frac{3}{2}}\right|_{\pi} ^{i}=\frac{2}{3} e^{\frac{3 \pi i}{4}}-\frac{2}{3} \pi^{\frac{3}{2}}=-\frac{\sqrt{2}}{3}-\frac{2}{3}(\sqrt{\pi})^{3}+\frac{i \sqrt{2}}{3} .
$$

(h) Since $(\log z)^{2}$ is analytic on $\mathbb{C} \backslash(-\infty, 0]$, we can directly compute the integral.

$$
\int_{\Gamma}(\log z)^{2} d z=z(\log z)^{2}-2 z \log z+\left.2 z\right|_{1} ^{i}=i(\log i)^{2}-2 i \log i+2 i-2=\pi-2+i\left(2-\frac{\pi^{2}}{4}\right)
$$

2. Let the polynomial be of the form $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$. Then $P(z)$ is continuous and has an antiderivative throughout \mathbb{C} containing Γ. That is,

$$
\mathcal{P}(z)=\sum_{i=0}^{n} \frac{a_{i}}{i+1} z^{i+1} .
$$

Then by Corollary 2

$$
\int_{\Gamma} P(z) d z=0 .
$$

4. False. Let Γ be the unit circle $|z|=1$ and $1 / z$ the function. We know that $1 / z$ is analytic at each point of the unit circle, but the integral

$$
\oint_{|z|=1} \frac{1}{z} d z=2 \pi i
$$

5. By Theorem 7, $f(z)=1 / z$ has antiderivative in $\mathbb{C} \backslash\{0\}$ if and only if $\int_{\Gamma_{1}} f(z) d z=\int_{\Gamma_{2}} f(z) d z$, where Γ_{1} and Γ_{2} are any two contours in $\mathbb{C} \backslash\{0\}$ sharing the same initial and terminal points. But Example 2 shows that for the two contours the integrals are not equal.
6. Let the contour Γ be the line segment from z_{1} to z_{2}. Then by Theorem 5 in Sec. 4.2,

$$
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|=\left|\int_{\Gamma} f^{\prime}(z) d z\right| \leqslant M\left|z_{2}-z_{1}\right| .
$$

Exercise 4.4

3. (a), (b), (d), (e). For (a), (b), (d), it is easy to observe that they are continuously deformable to Γ in D (by first deformed into a point, then to $\Gamma)$. For (e), the deformation function will be

$$
z(s, t)=3+e^{(2-6 s) \pi i t}
$$

where $0 \leqslant s \leqslant 1,0 \leqslant t \leqslant 1$. For (c), it is impossible to continuously deform it to Γ, since any deformation will pass through the unit disk $|z| \leqslant 1$, which is not contained in D.
4. We construct Γ_{0} first. The unit circle can be parametrized by

$$
z(t)= \begin{cases}e^{4 \pi i t} & 0 \leqslant t \leqslant 1 / 2 \\ e^{4 \pi i(1-t)} & 1 / 2 \leqslant t \leqslant 1\end{cases}
$$

Also, the point can be simply written as $e^{2 \pi i(0)}$. Then we have

$$
z(s, t)= \begin{cases}e^{4 \pi i(1-s) t} & (0 \leqslant t \leqslant 1 / 2) \\ e^{4 \pi i(1-s)(1-t)} & (1 / 2 \leqslant t \leqslant 1)\end{cases}
$$

where $0 \leqslant s \leqslant 1$. It is immediate to verify that

$$
\begin{aligned}
\int_{\Gamma_{0}} f(z) d z & =\oint_{|z|=1} f(z) d z+\oint_{|z|=1} f(z) d z \\
& =\oint_{|z|=1} f(z) d z-\oint_{|z|=1} f(z) d z=0=\int_{z=1} f(z) d z
\end{aligned}
$$

15. Since Γ is the circle $|z|=4$ traversed twice counterclockwise, $\int_{\Gamma} \frac{1}{z-a} d z=$ $2 \cdot(-2 \pi i)$ for $|a| \leqslant 4$. Therefore,

$$
\begin{aligned}
\int_{\Gamma} \frac{z}{(z+2)(z-1)} d z & =\frac{1}{3} \int_{\Gamma} \frac{1}{z-1} d t+\frac{2}{3} \int_{\Gamma} \frac{1}{z+2} d z \\
& =\frac{1}{3}(-4 \pi i)+\frac{2}{3}(-4 \pi i) \\
& =-4 \pi i
\end{aligned}
$$

18. (a) For all $R>2$, the circle $|z|=2$ can be continuously deformed into $|z|=R$. Then by Theorem 8, for $f(z):=\frac{1}{z^{2}(z-1)^{3}}$ we have

$$
I(R)=\oint_{|z|=R} f(z) d z=\oint_{|z|=2} f(z) d z=I
$$

(b) By Theorem 5 in Sec. 4.2,

$$
\begin{aligned}
|I(R)| & =\left|\oint_{|z|=R} \frac{1}{z^{2}(z-1)^{3}} d z\right| \\
& \leqslant \frac{1}{|z|^{2}(|z|-1)^{3}} \ell(|z|=R) \\
& =\frac{1}{R^{2}(R-1)^{3}} 2 \pi R \\
& =\frac{2 \pi}{R(R-1)^{3}}
\end{aligned}
$$

(c) It is evident that

$$
\lim _{R \rightarrow+\infty} \frac{2 \pi}{R(R-1)^{3}}=0
$$

Then $\lim _{R \rightarrow+\infty} I(R)=0$.
(d) As $R \rightarrow+\infty$, the circle $|z|=2$ can also be continuously deformed into $|z|=R$. Therefore, $I=\lim _{R \rightarrow+\infty} I(R)=0$.

