Solutions to MATH 300 Homework 4

EXERCISES 2.4

4. Let $u(x, y)=\frac{x^{\frac{4}{3}} y^{\frac{5}{3}}}{x^{2}+y^{2}}, v(x, y)=\frac{x^{\frac{5}{3}} y^{\frac{4}{3}}}{x^{2}+y^{2}}$. Then

$$
\left.\frac{\partial u}{\partial x}\right|_{x=0, y=0}=\lim _{\Delta x \rightarrow 0} \frac{u(\Delta x, 0)-u(0,0)}{\Delta x}=\lim _{\Delta x \rightarrow} \frac{0}{\Delta x}=0
$$

and

$$
\left.\frac{\partial u}{\partial y}\right|_{x=0, y=0}=\lim _{\Delta y \rightarrow 0} \frac{u(0, \Delta y)-v(0,0)}{\Delta y}=\lim _{\Delta y \rightarrow} \frac{0}{\Delta y}=0
$$

Similarly $\left.\frac{\partial v}{\partial x}\right|_{x=0, y=0}=0$ and $\left.\frac{\partial v}{\partial y}\right|_{x=0, y=0}=0$. Hence the Cauchy-Riemann equations holds at $z=0$. However, when $\Delta z \rightarrow 0$ through the real values $(\Delta z=\Delta x)$,

$$
\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}=0,
$$

while along the real line $y=x(\Delta z=\Delta x+i \Delta x)$

$$
\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta z)-f(0)}{\Delta z}=\lim _{\Delta x \rightarrow 0} \frac{\frac{(\Delta x)^{4 / 3}(\Delta x)^{5 / 3}+(\Delta x)^{5 / 3}(\Delta x)^{4 / 3}}{2(\Delta x)^{2}}}{\Delta x(1+i)}=\frac{1}{2}
$$

Therefore f is not differentiable at $z=0$.
5. Let $u(x, y)=e^{x^{2}-y^{2}} \cos (2 x y), v(x, y)=e^{x^{2}-y^{2}} \sin (2 x y)$. Then

$$
\frac{\partial u}{\partial x}=2 e^{x^{2}-y^{2}}[x \cos (2 x y)-y \sin (2 x y)]=\frac{\partial v}{\partial y}
$$

and

$$
\frac{\partial u}{\partial y}=-2 e^{x^{2}-y^{2}}[y \cos (2 x y)-x \sin (2 x y)]=-\frac{\partial v}{\partial x} .
$$

f is entire since these first partials exist and are continuous for all x and y. Since

$$
f(z)=e^{x^{2}-y^{2}}[\cos (2 x y)+i \sin (2 x y)]=e^{(x+i y)^{2}}=e^{z^{2}},
$$

it follows that $f^{\prime}(z)=2 z e^{z^{2}}$.
8. Let $f(z)=f(x+i y)=u(x, y)+i v(x, y)$. Suppose that $u(x, y)=c$ in D, where c is a constant. Then $\frac{\partial u}{\partial x}=0$ and by Cauchy-Riemann $-\frac{\partial v}{\partial x}=\frac{\partial u}{\partial y}=0$.
It follows that

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=0 .
$$

Therefore, f is constant in D.
If we suppose that $\operatorname{Im}(f)=c$, then by a similar argument we can prove the result.
11. If both f and \bar{f} are analytic in D, then $g:=\operatorname{Re}(f)=\frac{1}{2}(f+\bar{f})$ is analytic and real-valued. That is, $\operatorname{Im}(g)=0$. Hence it follows from Exercise 8 that $g=\operatorname{Re}(f)$ is constant in D. So f is constant by Exercise 8 again.

EXERCISES 2.5

3. (b) Since $\frac{\partial^{2} u}{\partial x^{2}}=e^{x} \sin y$, and $\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial\left(e^{x} \cos y\right)}{\partial y}=-e^{x} \sin y$, we have

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

u is harmonic. Next, we find the harmonic conjugate of u, denoted by v, which satisfies the Cauchy-Riemann equations. It follows from

$$
\frac{\partial u}{\partial x}=e^{x} \sin y=\frac{\partial v}{\partial y}
$$

that $v(x, y)=-e^{x} \cos y+\phi(x)$, where $\phi(x)$ is a differentiable real-valued function of x. Also, from

$$
\frac{\partial u}{\partial y}=e^{x} \cos y=-\frac{\partial v}{\partial x}
$$

we have $e^{x} \cos y=e^{x} \cos y-\phi^{\prime}(x)$, i.e., $\phi(x)$ is constant. Therefore, $v(x, y)=$ $-e^{x} \cos y+c, c \in \mathbb{C}$, is the harmonic conjugate of u.
Or: Since $u(x, y)=e^{x} \sin y$ can be written as the real part of the function
$-i e^{x+i y}=-i e^{z}$, which is entire, it follows that the u is harmonic and a harmonic conjugate of u is $\operatorname{Im}\left(-i e^{z}+c\right)=-e^{x} \cos y+c, c \in \mathbb{C}$.
(c) Since $u(x, y)=x y-x+y$ can be written as $\operatorname{Re}\left(-\frac{i}{2} z^{2}-i z-z\right)$, which is entire, it follows that the u is harmonic and a harmonic conjugate of u is $\operatorname{Im}\left(-\frac{i}{2} z^{2}-i z-z+c\right)=-\frac{1}{2}\left(x^{2}-y^{2}\right)-x-y+c, c \in \mathbb{C}$.
5. If $f(x+i y)=u(x, y)+i v(x, y)$ is analytic, then $-i f(x+i y)=v(x, y)-$ $i u(x, y)$ is analytic. Thus $-u$ is a harmonic conjugate of v.
7. Take $z=x+i y$. Since the region is bounded by $x=-1$ and $x=3$, naïvely, we consider the analytic function $f(z)=z$, whose real part is x. But it does not satisfy the boundary conditions. Hence we take $a f(z)+b$ with $a, b \in \mathbb{R}$, which is also analytic. Then $\operatorname{Re}(a f+b)=a x+b$ is harmonic. Using the boundary values we have

$$
\left\{\begin{array}{l}
a \cdot(-1)+b=0 \\
a \cdot(3)+b=4
\end{array}\right.
$$

which gives $a=b=1$. Then $\phi(x)=x+1$.
8. (a) Yes, because $\nabla^{2}(u+v)=\nabla^{2} u+\nabla^{2} v=0$ if both u and v are harmonic.
(b) No. Set $\frac{\partial f}{\partial x}=f_{x}$. Then $\nabla^{2}(u v)=v\left(u_{x x}+u_{y y}\right)+u\left(v_{x x}+u_{y y}\right)+2\left(u_{x} v_{x}+\right.$ $\left.u_{y} v_{y}\right)=2\left(u_{x} v_{x}+u_{y} v_{y}\right)$. So unless $u_{x} v_{x}+u_{y} v_{y}=0, u v$ is not harmonic. Take $u=x, v=x y$ as an example. Both of them are harmonic in \mathbb{R}^{2}. But $\nabla^{2}(u v)=2 y$, which means that it is harmonic only on the line $y=0$.
(c) Yes, because $\Delta\left(u_{x}\right)=u_{x x x}+u_{x y y}=u_{x x x}+u_{y y x}=\frac{\partial}{\partial x}(\Delta u)=\frac{\partial}{\partial x}(0)=0$.
15. Take $z=r e^{i \theta}$. Denote the annulus $\{z \in \mathbb{C}|1 \leqslant|z| \leqslant 2\}$ by \mathcal{A}. We consider on \mathcal{A} the analytic function $f(z)=a z^{n}+b z^{-n}+c$ with $a, b, c \in \mathbb{R}, n \in \mathbb{N}$, whose real part is $a r^{n} \cos n \theta+b r^{-n} \cos (-n \theta)+c$. Set $n=3$ to agree with the cosine argument on $|z|=2$.

$$
\begin{aligned}
\phi\left(r e^{i \theta}\right) & =a r^{3} \cos 3 \theta+b r^{-3} \cos (-3 \theta)+c . \\
& =\left(a r^{3}+b r^{-3}\right) \cos 3 \theta+c
\end{aligned}
$$

If $r=1$, then $\phi\left(e^{i \theta}\right)=0 \Rightarrow a+b=0, c=0$. If $r=2$, then $\phi\left(2 e^{i \theta}\right)=$ $5 \cos 3 \theta \Rightarrow(8 a+b / 8) \cos 3 \theta=5 \cos 3 \theta$. So $a=40 / 64, b=-40 / 63$ and

$$
\begin{aligned}
\phi\left(r e^{i \theta}\right) & =\frac{40}{63}\left(r^{3}-r^{-3}\right) \cos 3 \theta, \\
\phi(z) & =\frac{40}{63} \operatorname{Re}\left(z^{3}-z^{-3}\right) .
\end{aligned}
$$

EXERCISE 3.1

2. (a) Since $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$, it follows that

$$
n=\operatorname{deg}(p(z))=\sum_{i=1}^{r} \operatorname{deg}\left(\left(z-z_{i}\right)^{d_{i}}\right)=\sum_{i=1}^{r} d_{i} .
$$

(b) a_{n-1} is the coefficient corresponding to z^{n-1}. Observe from the expression

$$
p(z)=a_{n} \underbrace{\left(z-z_{1}\right) \cdots\left(z-z_{1}\right)}_{d_{1} \text { copies }} \underbrace{\left(z-z_{2}\right) \cdots\left(z-z_{2}\right)}_{d_{2} \text { copies }} \cdots \underbrace{\left(z-z_{r}\right) \cdots\left(z-z_{r}\right)}_{d_{r} \text { copies }}
$$

that we need to choose $-z_{i}$ from one of the factors once and z from the rest of the factors $n-1$ times, in order to give a term of degree $n-1$. Repeat the process for $i=1,2, \ldots, r$. Then since there are d_{i} copies of $\left(z-z_{i}\right)$, we have $d_{i}\left(-z_{i}\right)$'s. Therefore,
$a_{n-1}=a_{n}\left(\left(-z_{1}\right) d_{1}+\left(-z_{2}\right) d_{2}+\cdots+\left(-z_{r}\right) d_{r}\right)=-a_{n}\left(d_{1} z_{1}+d_{2} z_{2}+\cdots+d_{r} z_{r}\right)$.
(c) By a similar consideration, a_{0} is the constant term. Hence we need to choose $-z_{i}$ from each of the factors d_{i} times and z without once. Therefore,

$$
\begin{aligned}
a_{0} & =a_{n}\left(-z_{1}\right)^{d_{1}}\left(-z_{2}\right)^{d_{2}} \cdots\left(-z_{r}\right)^{d_{r}}=a_{n}(-1)^{d_{1}+d_{2}+\cdots+d_{r}} z_{1}^{d_{1}} z_{2}^{d_{2}} \cdots z_{r}^{d_{r}} \\
& =a_{n}(-1)^{n} z_{1}^{d_{1}} z_{2}^{d_{2}} \cdots z_{r}^{d_{r}} .
\end{aligned}
$$

3. (b) $z^{4}-16=\left(z^{2}+4\right)\left(z^{2}-4\right)=(z+2 i)(z-2 i)(z+2)(z-2)$.
(c)

$$
\begin{aligned}
1+z+z^{2}+z^{3}+z^{4}+z^{5}+z^{6} & =\frac{z^{7}-1}{z-1} \\
& =\left(z-\zeta_{7}\right)\left(z-\zeta_{7}^{2}\right) \cdots\left(z-\zeta_{7}^{6}\right),
\end{aligned}
$$

where $\zeta_{7}=e^{2 \pi i / 7}$.
5. (c) $(z-1)(z-2)^{3}=((z-2)+1)(z-2)^{3}=(z-2)^{4}+(z-2)^{3}$.
13. (b)

$$
\begin{aligned}
\frac{2 z+i}{z^{3}+z} & =\frac{2 z+i}{z(z+i)(z-i)} \\
& =\frac{A_{0}^{(1)}}{z}+\frac{A_{0}^{(2)}}{z+i}+\frac{A_{0}^{(3)}}{z-i} \\
& =\frac{i}{z}+\frac{i / 2}{z+i}-\frac{3 i / 2}{z-i}
\end{aligned}
$$

since by using (21), we have $A_{0}^{(1)}=\lim _{z \rightarrow 0} z \cdot \frac{2 z+i}{z^{3}+z}=i, A_{0}^{(2)}=\lim _{z \rightarrow-i}(z+i)$. $\frac{2 z+i}{z^{3}+z}=\frac{i}{2}, A_{0}^{(3)}=\lim _{z \rightarrow i}(z-i) \cdot \frac{2 z+i}{z^{3}+z}=-\frac{3 i}{2}$.
(d)

$$
\begin{aligned}
\frac{5 z^{4}+3 z 62+1}{2 z^{2}+3 z+1} & =\frac{5}{2} z^{2}-\frac{15}{4} z+\frac{47}{8}+\frac{-\frac{111}{8} z-\frac{39}{8}}{(z+1)(2 z+1)} \\
& =\frac{5}{2} z^{2}-\frac{15}{4} z+\frac{47}{8}+\frac{1}{2} \cdot \frac{A_{0}^{(1)}}{z+\frac{1}{2}}+\frac{A_{0}^{(2)}}{z+1} \\
& =\frac{5}{2} z^{2}-\frac{15}{4} z+\frac{47}{8}+\frac{\frac{33}{16}}{z+\frac{1}{2}}-\frac{9}{z+1}
\end{aligned}
$$

since by using (21), we have $A_{0}^{(1)}=\lim _{z \rightarrow-\frac{1}{2}}\left(z+\frac{1}{2}\right) \cdot \frac{-\frac{111}{8} z-\frac{39}{8}}{(z+1)(2 z+1)}=\frac{33}{16}$, $A_{0}^{(2)}=\lim _{z \rightarrow-1}(z+1) \cdot \frac{-\frac{111}{8} z-\frac{39}{8}}{(z+1)(2 z+1)}=-9$.

