Solutions to MATH 300 Homework 2

EXERCISES 1.5

4. (a) For $z = \sqrt{3} - i$, $r = \sqrt{(\sqrt{3})^2 + (-1)^2} = 2$, $\theta = \arctan(-1/\sqrt{3}) = -\pi/6$ (since $z = \sqrt{3} - i$ is in the 4-th quadrant). By using the identity $z^n = r^n e^{in\theta} = r^n(\cos n\theta + i\sin n\theta)$, we have

$$(\sqrt{3} - i)^7 = 2^7 e^{-7\pi i/6} = 128(\cos(-7\pi/6) + i\sin(-7\pi/6))$$
$$= 128(-\sqrt{3}/2 + i/2))$$
$$= -64\sqrt{3} + i \ 64.$$

(b) For z = 1+i, $r = \sqrt{1^2 + 1^2} = 2$, $\theta = \arctan(1) = \pi/4$ (since z = 1+i is in the first quadrant). By using the identity $z^n = r^n e^{in\theta} = r^n(\cos n\theta + i\sin n\theta)$, we have

$$(1+i)^{95} = (\sqrt{2})^{95} e^{95\pi i/4} = (\sqrt{2})^{95} (\cos(95\pi/4) + i\sin(95\pi/4))$$
$$= (\sqrt{2})^{95} (1/\sqrt{2} - i/\sqrt{2})$$
$$= 2^{47} (1-i).$$

6. (a) The polar form for $z_0 = -1$ is

$$-1 = e^{\pi i}.$$

Then by the identity $z^{1/m} = \sqrt[m]{|z|} e^{i(\theta + 2k\pi)/m}$ with k = 0, 1, 2, ..., m - 1, we obtain

$$(-1)^{1/5} = e^{\pi i/5 + 2k\pi i/5},$$

where k = 0, 1, 2, 3, 4. Those are the fifth roots of $z_0 = -1$. Geometrically, we can locate each of the roots $e^{\pi i/5}$, $e^{\pi i/5+2\pi i/5}$, $e^{\pi i/5+2\cdot 2\pi i/5}$, $e^{\pi i/5+2\cdot 3\pi i/5}$, and $e^{\pi i/5+2\cdot 4\pi i/5}$, which are all on the unit circle, by looking at their arguments. They are the vertices of a regular pentagon inscribed in the unit circle, where the vertices are at $e^{\pi i/5}$, $e^{3\pi i/5}$, $e^{\pi i} = -1$, $e^{7\pi i/5}$, and $e^{9\pi i/5}$. **11**. It follows from $(z+1)^5 = z^5$ that

$$\left(\frac{z+1}{z}\right)^5 = 1,$$

which means that $\frac{z+1}{z}$ may take the values of the fifth roots of unity $\omega = e^{2k\pi i/5}$, where k = 0, 1, 2, 3, 4. However, $\frac{z+1}{z}$ cannot take the value $e^{2\cdot 0\pi i/5} = 1$; Otherwise, $\frac{z+1}{z} = 1$ implies an absurd identity 1 = 0. Therefore,

$$\frac{z+1}{z} = \omega$$

implies that

$$z = \frac{1}{\omega - 1},$$

where $\omega = e^{2k\pi i/5}$ with k = 1, 2, 3, 4.

EXERCISES 1.6

2. (a) Let z = x + iy. Then the sketch of the set $\{z : |z - 1 + i| \leq 3\}$ is something like

(b) Let z = x + iy. Then the sketch of the set $\{z : |\text{Arg } z| < \pi/4\}$ is something like

(d) Let z = x + iy. Then the sketch of the set $\{z : -1 < \text{Im } z \leq 1\}$ is something like

3. Recall that for every point z_0 of an open set S, there is a circular neighbourhood of z, $B_{\rho}(z) = \{w : |w - z| < \rho\}$ with ρ being any small enough positive real number, such that $B_{\rho}(z)$ is completely contained in S. Then (a) is not open, since the points on the circle $\{z : |z-1+i| = 3\}$ do not have such neighbourhood. (d) is not open since the points on the line $\{z : \text{Im } z = 1\}$ do not have such neighbourhood. (b) satisfies this property. We conclude that (b) is open.

4. Recall that a domain is open connected. From the graphs above and Question 3, we conclude that (b) is a domain, since for any two points z_1 and z_2 , there is a polygonal path that lies entirely in $\{z : |\text{Arg } z| < \pi/4\}$ joining z_1 and z_2 .

5. Recall that for every point z in a bounded set S, there is a positive real number R such that |z| < R. For (a), we have $|z| \leq |1-i|+|z-1+i| \leq 2+3 = 5$. Hence R can be any real number greater than 5. But for (b) and (d) there is no such R. We conclude that (a) is bounded.

EXERCISE 2.1

1. (a) Let z = x + iy. Then

$$f(z) = f(x + iy) = 3(x + iy)^2 + 5(x + iy) + i + 1$$

= $(3x^2 - 3y^2 + 5x + 1) + i(6xy + 5y + 1).$

(c) Let z = x + iy. Then

$$h(z) = \frac{z+i}{z^2+1} = \frac{1}{z-i} = \frac{1}{x+i(y-1)}$$
$$= \frac{x-i(y-1)}{(x+i(y-1))(x-i(y-1))}$$
$$= \frac{x}{x^2+(y-1)^2} + i\frac{1-y}{x^2+(y-1)^2}.$$

(f) Let z = x + iy. Then

$$G(z) = G(x + iy) = e^{x} \cdot e^{iy} + e^{-x} \cdot e^{-iy}$$

= $e^{x}(\cos y + i\sin y) + e^{-x}(\cos(-y) + i\sin(-y))$
= $(e^{x} + e^{-x})\cos y + i(e^{x} - e^{-x})\sin y$
= $2\cosh x\cos y + i2\sinh x\sin y$.

2. (a) The domain of definition of f(z) is the entire complex plain \mathbb{C} .

(c) The domain of definition of h(z) is the entire complex plain \mathbb{C} except for two points z = i and z = -i, i.e., $\mathbb{C} \setminus \{i, -i\}$.

(f) The domain of definition of G(z) is the entire complex plain \mathbb{C} .

4. Since the points on the circle |z - 1| = 1 can be written as the polar form

$$z = 1 + e^{i\theta},$$

where we take $0 \leq \theta < 2\pi$, it follows that under the mapping w = f(z) = 1/z, those points are mapped to

$$\frac{1}{1+e^{i\theta}}.$$

Then

$$\frac{1}{1+e^{i\theta}} = \frac{1+e^{-i\theta}}{(1+e^{i\theta})(1+e^{-i\theta})}$$
$$= \frac{1+\cos\theta-i\sin\theta}{2(1+\cos\theta)}$$
$$= \frac{1}{2} - i\frac{\sin\theta}{2(1+\cos\theta)}.$$

Hence we obtain that the image is a vertical line x = 1/2 since as $0 \le \theta < 2\pi$, the range of $\frac{\sin \theta}{2(1 + \cos \theta)}$ is $\mathbb{R} \cup \{\infty\}$. Or: $w = f(z) = \frac{1}{z}$ implies that

$$|z-1| = |\frac{1}{w} - 1| = \frac{|w-1|}{|w|} = 1.$$

Then |w - 1| = |w|, which indicates that the points w are equidistant from (0,0) and (1,0). Hence w is the line $x = \frac{1}{2}$.

(a) is obtained by rotating the semidisk $\{|z| \leq 2, \text{Im } z \geq 0\} \pi/4$ counter-clockwise.

(b) is obtained by rotating the semidisk $\{|z| \leq 2, \text{Im } z \ge 0\} \pi/4$ clockwise.

(c) is obtained by rotating the semidisk $\{|z| \leq 2, \text{Im } z \ge 0\} 3\pi/4$ counter-clockwise.