Solutions to MATH 300 Homework 2

EXERCISES 1.5

4. (a) For $z=\sqrt{3}-i, r=\sqrt{(\sqrt{3})^{2}+(-1)^{2}}=2, \theta=\arctan (-1 / \sqrt{3})=$ $-\pi / 6$ (since $z=\sqrt{3}-i$ is in the 4 -th quadrant). By using the identity $z^{n}=r^{n} e^{i n \theta}=r^{n}(\cos n \theta+i \sin n \theta)$, we have

$$
\begin{aligned}
(\sqrt{3}-i)^{7} & =2^{7} e^{-7 \pi i / 6}=128(\cos (-7 \pi / 6)+i \sin (-7 \pi / 6)) \\
& =128(-\sqrt{3} / 2+i / 2)) \\
& =-64 \sqrt{3}+i 64
\end{aligned}
$$

(b) For $z=1+i, r=\sqrt{1^{2}+1^{2}}=2, \theta=\arctan (1)=\pi / 4$ (since $z=1+i$ is in the first quadrant). By using the identity $z^{n}=r^{n} e^{i n \theta}=r^{n}(\cos n \theta+i \sin n \theta)$, we have

$$
\begin{aligned}
(1+i)^{95} & =(\sqrt{2})^{95} e^{95 \pi i / 4}=(\sqrt{2})^{95}(\cos (95 \pi / 4)+i \sin (95 \pi / 4)) \\
& =(\sqrt{2})^{95}(1 / \sqrt{2}-i / \sqrt{2}) \\
& =2^{47}(1-i) .
\end{aligned}
$$

6. (a) The polar form for $z_{0}=-1$ is

$$
-1=e^{\pi i} .
$$

Then by the identity $z^{1 / m}=\sqrt[m]{|z|} e^{i(\theta+2 k \pi) / m}$ with $k=0,1,2, \ldots, m-1$, we obtain

$$
(-1)^{1 / 5}=e^{\pi i / 5+2 k \pi i / 5},
$$

where $k=0,1,2,3,4$. Those are the fifth roots of $z_{0}=-1$. Geometrically, we can locate each of the roots $e^{\pi i / 5}, e^{\pi i / 5+2 \pi i / 5}, e^{\pi i / 5+2 \cdot 2 \pi i / 5}, e^{\pi i / 5+2 \cdot 3 \pi i / 5}$, and $e^{\pi i / 5+2 \cdot 4 \pi i / 5}$, which are all on the unit circle, by looking at their arguments. They are the vertices of a regular pentagon inscribed in the unit circle, where the verticses are at $e^{\pi i / 5}, e^{3 \pi i / 5}, e^{\pi i}=-1, e^{7 \pi i / 5}$, and $e^{9 \pi i / 5}$.
11. It follows from $(z+1)^{5}=z^{5}$ that

$$
\left(\frac{z+1}{z}\right)^{5}=1
$$

which means that $\frac{z+1}{z}$ may take the values of the fifth roots of unity $\omega=$ $e^{2 k \pi i / 5}$, where $k=0,1,2,3,4$. However, $\frac{z+1}{z}$ cannot take the value $e^{2.0 \pi i / 5}=$ 1; Otherwise, $\frac{z+1}{z}=1$ implies an absurd identity $1=0$. Therefore,

$$
\frac{z+1}{z}=\omega
$$

implies that

$$
z=\frac{1}{\omega-1}
$$

where $\omega=e^{2 k \pi i / 5}$ with $k=1,2,3,4$.

EXERCISES 1.6

2. (a) Let $z=x+i y$. Then the sketch of the set $\{z:|z-1+i| \leqslant 3\}$ is something like

(b) Let $z=x+i y$. Then the sketch of the set $\{z:|\operatorname{Arg} z|<\pi / 4\}$ is something like

(d) Let $z=x+i y$. Then the sketch of the set $\{z:-1<\operatorname{Im} z \leqslant 1\}$ is something like

3. Recall that for every point z_{0} of an open set S, there is a circular neighbourhood of $z, B_{\rho}(z)=\{w:|w-z|<\rho\}$ with ρ being any small enough positive real number, such that $B_{\rho}(z)$ is completely contained in S. Then (a) is not open, since the points on the circle $\{z:|z-1+i|=3\}$ do not have such neighbourhood. (d) is not open since the points on the line $\{z: \operatorname{Im} z=1\}$ do not have such neighbourhood. (b) satisfies this property. We conclude that (b) is open.
4. Recall that a domain is open connected. From the graphs above and Question 3, we conclude that (b) is a domain, since for any two points z_{1} and z_{2}, there is a polygonal path that lies entirely in $\{z:|\operatorname{Arg} z|<\pi / 4\}$ joining z_{1} and z_{2}.
5. Recall that for every point z in a bounded set S, there is a positive real number R such that $|z|<R$. For (a), we have $|z| \leqslant|1-i|+|z-1+i| \leqslant$ $2+3=5$. Hence R can be any real number greater than 5 . But for (b) and (d) there is no such R. We conclude that (a) is bounded.

EXERCISE 2.1

1. (a) Let $z=x+i y$. Then

$$
\begin{aligned}
f(z) & =f(x+i y)=3(x+i y)^{2}+5(x+i y)+i+1 \\
& =\left(3 x^{2}-3 y^{2}+5 x+1\right)+i(6 x y+5 y+1) .
\end{aligned}
$$

(c) Let $z=x+i y$. Then

$$
\begin{aligned}
h(z) & =\frac{z+i}{z^{2}+1}=\frac{1}{z-i}=\frac{1}{x+i(y-1)} \\
& =\frac{x-i(y-1)}{(x+i(y-1))(x-i(y-1))} \\
& =\frac{x}{x^{2}+(y-1)^{2}}+i \frac{1-y}{x^{2}+(y-1)^{2}} .
\end{aligned}
$$

(f) Let $z=x+i y$. Then

$$
\begin{aligned}
G(z) & =G(x+i y)=e^{x} \cdot e^{i y}+e^{-x} \cdot e^{-i y} \\
& =e^{x}(\cos y+i \sin y)+e^{-x}(\cos (-y)+i \sin (-y)) \\
& =\left(e^{x}+e^{-x}\right) \cos y+i\left(e^{x}-e^{-x}\right) \sin y \\
& =2 \cosh x \cos y+i 2 \sinh x \sin y .
\end{aligned}
$$

2. (a) The domain of definition of $f(z)$ is the entire complex plain \mathbb{C}.
(c) The domain of definition of $h(z)$ is the entire complex plain \mathbb{C} except for two points $z=i$ and $z=-i$, i.e., $\mathbb{C} \backslash\{i,-i\}$.
(f) The domain of definition of $G(z)$ is the entire complex plain \mathbb{C}.
3. Since the points on the circle $|z-1|=1$ can be written as the polar form

$$
z=1+e^{i \theta}
$$

where we take $0 \leqslant<\theta<2 \pi$, it follows that under the mapping $w=f(z)=$ $1 / z$, those points are mapped to

$$
\frac{1}{1+e^{i \theta}} .
$$

Then

$$
\begin{aligned}
\frac{1}{1+e^{i \theta}}= & \frac{1+e^{-i \theta}}{\left(1+e^{i \theta}\right)\left(1+e^{-i \theta}\right)} \\
& =\frac{1+\cos \theta-i \sin \theta}{2(1+\cos \theta)} \\
& =\frac{1}{2}-i \frac{\sin \theta}{2(1+\cos \theta)} .
\end{aligned}
$$

Hence we obtain that the image is a vertical line $x=1 / 2$ since as $0 \leqslant \theta<2 \pi$, the range of $\frac{\sin \theta}{2(1+\cos \theta)}$ is $\mathbb{R} \cup\{\infty\}$.
Or: $w=f(z)=\frac{1}{z}$ implies that

$$
|z-1|=\left|\frac{1}{w}-1\right|=\frac{|w-1|}{|w|}=1
$$

Then $|w-1|=|w|$, which indicates that the points w are equidistant from $(0,0)$ and $(1,0)$. Hence w is the line $x=\frac{1}{2}$.

(a) is obtained by rotating the semidisk $\{|z| \leqslant 2, \operatorname{Im} z \geqslant 0\} \pi / 4$ counterclockwise.
(b) is obtained by rotating the semidisk $\{|z| \leqslant 2, \operatorname{Im} z \geqslant 0\} \pi / 4$ clockwise.
(c) is obtained by rotating the semidisk $\{|z| \leqslant 2$, $\operatorname{Im} z \geqslant 0\} 3 \pi / 4$ counterclockwise.

