
Solutions to Math 300 2012WT1 Solutions

1. (a) z = i log(−1 + i) = i
[
log
√

2 + i(3π
4

+ 2nπ)
]
, so cos z = (eiz + e−iz)/2 = −3

4
+ i

4
.

(b) z =
√

3+i√
2(1+i)

= (
√

3+1−i(
√

3−1)

2
√

2
. Since |z| = 1 and z lies in the fourth quadrant, Log(z) =

−i arctan(
√

3−1√
3+1

) = −i arctan(2−
√

3), where arctan denotes the inverse tangent function

with range in [−π
2
, π

2
].

(c) cosh z = (ez + e−z)/2, so cosh z = 1
2

implies that ez + e−z = 1 or ez = 1±i
√

3
2

. Therefore

the solutions are of the form z = log
(

1±i
√

3
2

)
= i(±π

3
+ 2nπ) where n is any integer.

2. (a) Since f has continuous first partial derivatives at all points, it is differentiable at all
points where Cauchy-Riemann equations hold. Since ux = 1, uy = 2, vx = 4(2x− y) and
vy = −2(2x− y), we find that the CR-equations hold if and only if 2x− y = −1

2
. Thus

f is differentiable only at the points lying on this line.

(b) Since the line does not contain any open set, f is analytic nowhere.

(c) Suppose that g = u + iw is an entire function. By CR equations, wx = −uy = −2 and
wy = ux = 1. Therefore, w = y−2x+C where C is any constant. Hence g = (1−2i)z+C
for any arbitrary constant C.

3. The domain of f indicates that a branch could be defined as follows:

f(z) = exp
[
−1

2
L−π

2
(z − 1)

]
where L−π

2
denotes the branch of the complex logarithm with the cut along the nonpositive

imaginary axis. In other words, L−π
2
(z) = ln |z|+ i arg(z), with arg(z) ∈ (−π

2
, 3π

2
).

Parametrize Γ as z(t) = eit, 0 ≤ t ≤ π. Therefore L−π
2
(z(t)) = it, hence∫

Γ

f(z) dz =

∫ π

0

e−
it
2 ieit dt = i

∫ π

0

e
it
2 dt = 2(i− 1).

4. Use the residue theorem to evaluate all the integrals in this problem.
(a) 2πi
(b) −πi
(c) 200πie−i

(d) −π2i
4

.

5. For any K > R, let CK denote the circle centred at z0 = 0 with radius K. We make use the
inequality for derivatives of analytic functions: for any r ≥ 1,∣∣f (n+r)(0)

∣∣ ≤ (n+ r)!
MK

Kn+r
,

where MK = supz∈CK |f(z)|. By the hypothesis of this problem, MK ≤ CKn. Therefore for
every K > R, we obtain the estimate∣∣f (n+r)(0)

∣∣ ≤ (n+ r)!
CKn

Kn+r
=

(n+ 1)!C

Kr
→ 0 as K →∞.

1



2

Thus f (n+r)(0) = 0 for all r ≥ 1. Now it follows from the Taylor expansion of f that

f(z) =
∞∑
j=0

f (j)(0)

j!
(z − z0)j,

in other words, f is a polynomial of degree at most n.

6. By partial fraction expansion, we find that

(1)
1

(3z − 1)(z + 2)
=

3

7(3z − 1)
− 1

7(z + 2)
.

(a) For large |z|, both of the following inequalities |1/3z| < 1 and |2/z| < 1. We therefore
arrange the expressions above so that the geometric series expansion can be used:

3

7(3z − 1)
=

1

7z
(
1− 1

3z

) =
1

7z

∞∑
k=0

( 1

3z

)k
1

7(z + 2)
=

1

7z
(
1 + 2

z

) =
1

7z

∞∑
k=0

(2

z

)k
.

Therefore for large |z|,

f(z) =
1

7z

∞∑
k=0

(
3−k − 2k

)
z−k.

(b) Here the annular region must be of the form {z : r < |z| < R} where 1
3
< r < 1 < R < 2.

Thus now |1/3z| < 1 and |z|/2 < 1, so the second term in (1) has to be arranged
differently for the geometric series formula to be applied.

1

7(z + 2)
=

1

14(1 + z
2
)

=
1

14

∞∑
k=0

(
−z

2

)k
.

In this region the Laurent series takes the form

f(z) =
1

7z

∞∑
k=0

( 1

3z

)k
− 1

14

∞∑
k=0

(
−z

2

)k
.

(c) The function f has two simple poles, at z = 1
3

and z = −2 respectively, with Resf (
1
3
) =

1/7 and Resf (−2) = −1
7
.

(d)
∫

Γ
f(z) dz = 2πiResf (

1
3
)− 2πiResf (−2) = 4πi

7
.
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7. Expanding e1/z and 1/(1− z) in their Taylor expansions we find that

e
1
z =

∞∑
k=0

1

k!zk
= 1 +

1

1!z
+

1

2!z2
+

1

3!z3
+ · · ·

1

1− z
=
∞∑
k=0

zk = 1 + z + z2 + z3 + · · · , so

Res(e
1
z

1

1− z
) = coefficient of

1

z
in the product of the two Laurent series

=
1

1!
+

1

2!
+

1

3!
+ · · ·

= e− 1.


