1. (a) $z=i \log (-1+i)=i\left[\log \sqrt{2}+i\left(\frac{3 \pi}{4}+2 n \pi\right)\right]$, so $\cos z=\left(e^{i z}+e^{-i z}\right) / 2=-\frac{3}{4}+\frac{i}{4}$.
(b) $z=\frac{\sqrt{3}+i}{\sqrt{2}(1+i)}=\frac{(\sqrt{3}+1-i(\sqrt{3}-1)}{2 \sqrt{2}}$. Since $|z|=1$ and z lies in the fourth quadrant, $\log (z)=$ $-i \arctan \left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)=-i \arctan (2-\sqrt{3})$, where \arctan denotes the inverse tangent function with range in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
(c) $\cosh z=\left(e^{z}+e^{-z}\right) / 2$, so $\cosh z=\frac{1}{2}$ implies that $e^{z}+e^{-z}=1$ or $e^{z}=\frac{1 \pm i \sqrt{3}}{2}$. Therefore the solutions are of the form $z=\log \left(\frac{1 \pm i \sqrt{3}}{2}\right)=i\left(\pm \frac{\pi}{3}+2 n \pi\right)$ where n is any integer.
2. (a) Since f has continuous first partial derivatives at all points, it is differentiable at all points where Cauchy-Riemann equations hold. Since $u_{x}=1, u_{y}=2, v_{x}=4(2 x-y)$ and $v_{y}=-2(2 x-y)$, we find that the CR-equations hold if and only if $2 x-y=-\frac{1}{2}$. Thus f is differentiable only at the points lying on this line.
(b) Since the line does not contain any open set, f is analytic nowhere.
(c) Suppose that $g=u+i w$ is an entire function. By CR equations, $w_{x}=-u_{y}=-2$ and $w_{y}=u_{x}=1$. Therefore, $w=y-2 x+C$ where C is any constant. Hence $g=(1-2 i) z+C$ for any arbitrary constant C.
3. The domain of f indicates that a branch could be defined as follows:

$$
f(z)=\exp \left[-\frac{1}{2} \mathcal{L}_{-\frac{\pi}{2}}(z-1)\right]
$$

where $\mathcal{L}_{-\frac{\pi}{2}}$ denotes the branch of the complex logarithm with the cut along the nonpositive imaginary axis. In other words, $\mathcal{L}_{-\frac{\pi}{2}}(z)=\ln |z|+i \arg (z)$, with $\arg (z) \in\left(-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$.

Parametrize Γ as $z(t)=e^{i t}, 0 \leq t \leq \pi$. Therefore $\mathcal{L}_{-\frac{\pi}{2}}(z(t))=i t$, hence

$$
\int_{\Gamma} f(z) d z=\int_{0}^{\pi} e^{-\frac{i t}{2}} i e^{i t} d t=i \int_{0}^{\pi} e^{\frac{i t}{2}} d t=2(i-1)
$$

4. Use the residue theorem to evaluate all the integrals in this problem.
(a) $2 \pi i$
(b) $-\pi i$
(c) $200 \pi i e^{-i}$
(d) $-\frac{\pi^{2} i}{4}$.
5. For any $K>R$, let C_{K} denote the circle centred at $z_{0}=0$ with radius K. We make use the inequality for derivatives of analytic functions: for any $r \geq 1$,

$$
\left|f^{(n+r)}(0)\right| \leq(n+r)!\frac{M_{K}}{K^{n+r}},
$$

where $M_{K}=\sup _{z \in C_{K}}|f(z)|$. By the hypothesis of this problem, $M_{K} \leq C K^{n}$. Therefore for every $K>R$, we obtain the estimate

$$
\left|f^{(n+r)}(0)\right| \leq(n+r)!\frac{C K^{n}}{K^{n+r}}=\frac{(n+1)!C}{K^{r}} \rightarrow 0 \text { as } K \rightarrow \infty
$$

Thus $f^{(n+r)}(0)=0$ for all $r \geq 1$. Now it follows from the Taylor expansion of f that

$$
f(z)=\sum_{j=0}^{\infty} \frac{f^{(j)}(0)}{j!}\left(z-z_{0}\right)^{j}
$$

in other words, f is a polynomial of degree at most n.
6. By partial fraction expansion, we find that

$$
\begin{equation*}
\frac{1}{(3 z-1)(z+2)}=\frac{3}{7(3 z-1)}-\frac{1}{7(z+2)} . \tag{1}
\end{equation*}
$$

(a) For large $|z|$, both of the following inequalities $|1 / 3 z|<1$ and $|2 / z|<1$. We therefore arrange the expressions above so that the geometric series expansion can be used:

$$
\begin{aligned}
\frac{3}{7(3 z-1)} & =\frac{1}{7 z\left(1-\frac{1}{3 z}\right)}=\frac{1}{7 z} \sum_{k=0}^{\infty}\left(\frac{1}{3 z}\right)^{k} \\
\frac{1}{7(z+2)} & =\frac{1}{7 z\left(1+\frac{2}{z}\right)}=\frac{1}{7 z} \sum_{k=0}^{\infty}\left(\frac{2}{z}\right)^{k}
\end{aligned}
$$

Therefore for large $|z|$,

$$
f(z)=\frac{1}{7 z} \sum_{k=0}^{\infty}\left(3^{-k}-2^{k}\right) z^{-k}
$$

(b) Here the annular region must be of the form $\{z: r<|z|<R\}$ where $\frac{1}{3}<r<1<R<2$. Thus now $|1 / 3 z|<1$ and $|z| / 2<1$, so the second term in (1) has to be arranged differently for the geometric series formula to be applied.

$$
\frac{1}{7(z+2)}=\frac{1}{14\left(1+\frac{z}{2}\right)}=\frac{1}{14} \sum_{k=0}^{\infty}\left(-\frac{z}{2}\right)^{k}
$$

In this region the Laurent series takes the form

$$
f(z)=\frac{1}{7 z} \sum_{k=0}^{\infty}\left(\frac{1}{3 z}\right)^{k}-\frac{1}{14} \sum_{k=0}^{\infty}\left(-\frac{z}{2}\right)^{k}
$$

(c) The function f has two simple poles, at $z=\frac{1}{3}$ and $z=-2$ respectively, with $\operatorname{Res}_{f}\left(\frac{1}{3}\right)=$ $1 / 7$ and $\operatorname{Res}_{f}(-2)=-\frac{1}{7}$.
(d) $\int_{\Gamma} f(z) d z=2 \pi i \operatorname{Res}_{f}\left(\frac{1}{3}\right)-2 \pi i \operatorname{Res}_{f}(-2)=\frac{4 \pi i}{7}$.
7. Expanding $e^{1 / z}$ and $1 /(1-z)$ in their Taylor expansions we find that

$$
\begin{aligned}
e^{\frac{1}{z}} & =\sum_{k=0}^{\infty} \frac{1}{k!z^{k}}=1+\frac{1}{1!z}+\frac{1}{2!z^{2}}+\frac{1}{3!z^{3}}+\cdots \\
\frac{1}{1-z} & =\sum_{k=0}^{\infty} z^{k}=1+z+z^{2}+z^{3}+\cdots, \quad \text { so } \\
\operatorname{Res}\left(e^{\frac{1}{z}} \frac{1}{1-z}\right) & =\text { coefficient of } \frac{1}{z} \text { in the product of the two Laurent series } \\
& =\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots \\
& =e-1
\end{aligned}
$$

