Homework 9 - Math 321, Spring 2012

Due on Friday March 23

1. Let α be continuous and increasing. Given $f \in \mathcal{R}_{\alpha}[a, b]$ and $\epsilon>0$, show that there exist
(a) a step function h on $[a, b]$ with $\|h\|_{\infty} \leq\|f\|_{\infty}$ such that $\int_{a}^{b}|f-h| d \alpha<\epsilon$, and
(b) a continuous function g on $[a, b]$ with $\|g\|_{\infty} \leq\|f\|_{\infty}$ such that $\int_{a}^{b}|f-g| d \alpha<\epsilon$.
2. Give an example of a sequence of Riemann integrable functions on $[0,1]$ that converges pointwise to a nonintegrable function.
3. Recall the definition of a Riemann-Stieltjes intgral for a general (not necessarily increasing) integrator α. Show that this definition coincides with our previous definition (in terms of upper and lower sums) if α is increasing.
4. (a) Construct a nonconstant increasing function α and a nonzero continuous function $f \in$ $\mathcal{R}_{\alpha}[a, b]$ such that $\int_{a}^{b}|f| d \alpha=0$. Is it possible to choose α to also be continuous? Explain. (b) If f is continuous on $[a, b]$ and if $f\left(x_{0}\right) \neq 0$ for some x_{0}, show that $\int_{a}^{b}|f(x)| d x \neq 0$. Conclude that $\|f\|=\int_{a}^{b}|f(x)| d x$ defines a norm on $C[a, b]$. Does it define a norm on all of $\mathcal{R}[a . b]$? Explain.
