Homework 7 - Math 321, Spring 2012

Due on Friday March 9

1. Show that $\mathrm{BV}[a, b]$, the space of functions of bounded variation on $[a, b]$ is complete under the variation norm $\|\cdot\|_{\mathrm{BV}}$:

$$
\|f\|_{\mathrm{BV}}=|f(a)|+V_{a}^{b} f
$$

2. Let us return to our discussion of Jordan's theorem. Convince yourself that the decomposition of a function of bounded variation into the difference of increasing functions is by no means unique: $f=g-h=(g+1)-(h+1)$. The purpose of this problem is to indicate a specific choice of g and h that turns out to be very useful in studying $B V[a, b]$.

Given $f \in B V[a, b]$ and $v(x)=V_{a}^{x} f$, we define the positive variation of f by

$$
p(x)=\frac{1}{2}[v(x)+f(x)-f(a)]
$$

and the negative variation of f by

$$
n(x)=\frac{1}{2}[v(x)-f(x)+f(a)],
$$

so that $v(x)=p(x)+n(x)$ and $f(x)=f(a)+p(x)-n(x)$.
(a) Prove that the functions p and n admit the following natural characterizations:

$$
p(x)=\sup _{P \in \Pi^{+}(x)} \sum_{j}\left[f\left(d_{j}\right)-f\left(c_{j}\right)\right], \quad n(x)=\sup _{P \in \Pi^{-}(x)} \sum_{j}\left[f\left(c_{j}\right)-f\left(d_{j}\right)\right],
$$

where

$$
\begin{array}{r}
\Pi^{+}(x)=\left\{P=\bigcup_{j=1}^{n}\left[c_{j}, d_{j}\right] \subseteq[a, x]: n \geq 1, a \leq c_{j}<d_{j} \leq c_{j+1} \leq b\right. \\
\\
\left.f\left(d_{j}\right)-f\left(c_{j}\right) \geq 0 \text { for all } j\right\} \\
\Pi^{-}(x)=\left\{P=\bigcup_{j=1}^{n}\left[c_{j}, d_{j}\right] \subseteq[a, x]: n \geq 1, a \leq c_{j}<d_{j} \leq c_{j+1} \leq b\right. \\
\\
\left.f\left(d_{j}\right)-f\left(c_{j}\right) \leq 0 \text { for all } j\right\}
\end{array}
$$

Use this description to deduce that $0 \leq p \leq v$ and $0 \leq n \leq v$ and that p and n are increasing functions on $[a, b]$.
(b) Show that the functions p and n are "variation minimizers" for the Jordan decomposition of f, in the following sense: If g and h are increasing functions on $[a, b]$ such that $f=g-h$, then

$$
V_{x}^{y} p \leq V_{x}^{y} g \quad \text { and } \quad V_{x}^{y} n \leq V_{x}^{y} h \quad \text { for all } x<y \text { in }[a, b] .
$$

3. Prove the following result known as Helly's first theorem: Let $\left\{f_{n}\right\}$ be a bounded sequence in $\mathrm{BV}[a, b]$, i.e., suppose that $\left\|f_{n}\right\|_{\mathrm{BV}} \leq K$ for all n. Then some subsequence of $\left\{f_{n}\right\}$ converges pointwise on $[a, b]$ to a function $f \in \mathrm{BV}[a, b]$, which also satisfies $\|f\|_{\mathrm{BV}} \leq K$. (Hint: Use Jordan's theorem to write $f_{n}=g_{n}-h_{n}$, where g_{n} and h_{n} are uniformly bounded sequences of increasing functions.)

Helly's first theorem should be viewed as an almost-compactness result in that it provides a convergent subsequence for any bounded sequence in $\mathrm{BV}[a, b]$. Unfortunately, the convergence here is pointwise and not necessarily convergence in the metric of BV $[a, b]$, or even in the weaker metric of $\mathrm{B}[a, b]$.

