Homework 2 - Math 321, Spring 2012

Due on Friday January 20

- 1. Consider the metric space C[a, b] equipped with the sup norm metric $|| \cdot ||_{\infty}$. Is $(C[a, b], || \cdot ||_{\infty})$ complete?
- 2. Define a metric on $C(\mathbb{R})$ by setting

$$d(f,g) = \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(f,g)}{1 + d_n(f,g)} \quad \text{where} \quad d_n(f,g) = \max_{|t| \le n} |f(t) - g(t)|.$$

Convince yourself that d is a metric (but you do not have to submit the proof for it).

- (a) Prove that f_n converges to f in the above metric of $C(\mathbb{R})$ if and only if f_n converges uniformly to f on every compact subset of \mathbb{R} . For this reason, convergence in $C(\mathbb{R})$ is sometimes called *uniform convergence on compacta*.
- (b) Show that $C(\mathbb{R})$ is complete.
- 3. (Exercise 8, Chapter 7 of the textbook) Define the function I as follows,

$$I(x) = \begin{cases} 0 & \text{if } x \le 0, \\ 1 & \text{if } x > 0. \end{cases}$$

If $\{x_n\}$ is a sequence of distinct points of (a, b) and if $\sum |c_n|$ converges, prove that the series

$$f(x) = \sum_{n=1}^{\infty} c_n I(x - x_n), \quad a \le x \le b$$

converges uniformly, and that f is continuous for every $x \neq x_n$. 4. Show that both

$$\sum_{n=1}^{\infty} x^n (1-x) \quad \text{and} \ \sum_{n=1}^{\infty} (-1)^n x^n (1-x)$$

are convergent on [0, 1], but only one converges uniformly. Which one? Why?

5. Show that

$$\sum_{n=1}^{\infty} \frac{x^2}{(1+x^2)^n}$$

converges for all $|x| \leq 1$, but that the convergence is not uniform.