Homework 1 - Math 321, Spring 2012

Due on Friday January 13

1. Does the sequence of functions

$$
f_{n}(x)=n x e^{-n x}
$$

converge pointwise on $[0, \infty)$? Is the convergence uniform on this interval? If yes, give reasons. If not, determine the intervals (if any) on which the convergence is uniform.
2. Let $\left\{f_{n}: n \geq 1\right\}$ and $\left\{g_{n}: n \geq 1\right\}$ be real-valued functions on a set X, and suppose that both sequences converge uniformly on X. Show that the sequence $\left\{f_{n}+g_{n}: n \geq 1\right\}$ converges uniformly on X. Give an example showing that $\left\{f_{n} g_{n}: n \geq 1\right\}$ need not converge uniformly on X.
3. Fix $a, b \in \mathbb{R}, a<b$. Let $f_{n}:[a, b] \rightarrow \mathbb{R}$ satisfy $\left|f_{n}(x)\right| \leq 1$ for all x and n. Show that there is a subsequence $\left\{f_{n_{k}}\right\}$ such that $\lim _{k \rightarrow \infty} f_{n_{k}}(x)$ exists for each rational $x \in[a, b]$.

