Midterm 1 Practice Problem set

1. Let $\left\{P_{n}\right\}$ be a sequence of real polynomials of degree $\leq d$, a fixed integer. Suppose that $P_{n}(x) \rightarrow 0$ pointwise for $0 \leq x \leq 1$. Prove that $P_{n} \rightarrow 0$ uniformly on $[0,1]$.
2. For each positive integer n, define $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by $f_{n}(x)=\cos n x$. Prove that the sequence of functions $\left\{f_{n}\right\}$ has no uniformly convergent subsequence.
3. Let $C^{1}[a, b]$ be the space of real-valued continuous functions f on $[0,1]$ such that f^{\prime} is continuous on $[0,1]$, with the norm

$$
\|f\|=\sup _{0 \leq x \leq 1}|f(x)|+\sup _{0 \leq x \leq 1}\left|f^{\prime}(x)\right| .
$$

Which subsets of $C^{1}[0,1]$ are compact?
4. Let the functions $f_{n}:[0,1] \rightarrow[0,1], n=1,2,3, \cdots$ satisfy

$$
\left|f_{n}(x)-f_{n}(y)\right| \leq|x-y| \quad \text { whenever } \quad|x-y| \geq \frac{1}{n}
$$

Prove that the sequence has a uniformly convergent subsequence.
5. (a) Give an example of a sequence of C^{1} functions $f_{k}:[0, \infty) \rightarrow \mathbb{R}, k=0,1,2, \cdots$ such that $f_{k}(0)=0$ for all k and $f_{k}^{\prime}(x) \rightarrow f_{0}^{\prime}(x)$ for all x as $k \rightarrow \infty$, but $f_{k}(x)$ does not converge to $f_{0}(x)$ for all x as $k \rightarrow \infty$.
(b) State an extra condition which would imply that $f_{k}(x) \rightarrow f_{0}(x)$ for all x as $k \rightarrow \infty$.
6. Define two sequences $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ as follows:

$$
\begin{aligned}
& f_{n}(x)=x\left(1+\frac{1}{n}\right) \text { for } x \in \mathbb{R}, n=1,2, \cdots \\
& g_{n}(x)= \begin{cases}\frac{1}{n} & \text { if } x=0 \text { or } x \notin \mathbb{Q} \\
b+\frac{1}{n} & \text { if } x=\frac{a}{b} \in \mathbb{Q}, a \in \mathbb{Z}, b \in \mathbb{N}, \operatorname{gcd}(a, b)=1\end{cases}
\end{aligned}
$$

Let $h_{n}(x)=f_{n}(x) g_{n}(x)$. Show that f_{n} and g_{n} converge uniformly on every finite interval, but that h_{n} fails to converge uniformly on every finite interval.
7. (a) If X is infinite, show that $B(X)$ is not separable.
(b) Is $C(\mathbb{R})$ separable?
8. Let $S[a, b]$ denote the space of all step functions on $[a, b]$. Show that $f \in \overline{S[a, b]}$ if and only if both these properties hold:
i. $f(x+)$ and $f(x-)$ exist at each x in (a, b), and
ii. $f(a+)$ and $f(b-)$ exist.

