Math 105 - April 10 Final Exam Review

1 Series

a Text: Determine if the following series converge or diverge.

 $\begin{array}{l} \text{i } \sum_{k=1}^{\infty} \frac{(k!)^3}{(3k)!} \\ \text{ii } \sum_{k=2}^{\infty} \frac{5 \ln k}{k} \\ \text{iii } \sum_{k=1}^{\infty} \frac{2^k k!}{k^k} \\ \text{iv } \sum_{k=1}^{\infty} \frac{k^k}{k^{11}+3} \\ \text{v } \sum_{k=1}^{\infty} \frac{(k^2+1)^{1/3}}{\sqrt{k^3+2}} \\ \text{vi } \sum_{k=1}^{\infty} \frac{1}{3^k-2^k} \\ \text{vii } \sum_{k=1}^{\infty} k^{-1/k} \\ \text{Tarte. Evend the avalue} \end{array}$

- b Text: Find the values of the parameter p for which $\sum_{k=2}^{\infty} \frac{1}{k \ln k (\ln \ln k)^p}$ converges.
- c Text: Evaluate $\sum_{k=1}^{\infty} \frac{1}{(k+1)(k+2)}$
- d Text: Find the first four nonzero terms in the Taylor series centred at x = 0 for $f(x) = \frac{e^x + e^{-x}}{2}$ and determine the radius of convergence.
- e Text: Find the function represented by $\sum_{k=1}^{\infty} \frac{(x-2)^k}{3^{2k}}$ and find the interval of convergence.

2 Continuous Probability

- a From WebWork (numbers are simplified): A raffle has a grand prize of a Mediterranean cruise valued at \$10,000 with a second prize of a Las Vegas getaway valued at \$2000. If each ticket costs \$10 and 100 tickets are sold, what are the expected winnings for a ticket buyer?
- b Past Math 105 Final Exam: A discrete random variable takes only two values, 0 and 1. Find $p = \Pr(X = 1)$ if the variance of X is 1/4.
- c Probability Module: Let $p(x) = \frac{1}{\beta}e^{-x/\beta}$ for $0 \le x < \infty$ with $\beta > 0$. Show this is a density function and compute $\Pr(X \ge 1)$ and $\mathbb{E}(X)$.
- d Probability Module: Show that $f(x) = 1 e^{-x}$ for $x \ge 0$ and f(x) = 0 otherwise is a CDF.
- e Probability Module: Find the constant k so that $p(x) = k \sin x$, $0 \le x \le \pi$ is a PDF.

3 Miscellaneous

- a Text: Find the point(s) on the cone $z^2 = x^2 + y^2$ nearest the point P(1, 4, 0).
- b Past Math 105 Final Exam: Let $f(x) = \lim_{n \to \infty} \left[\left(\frac{1}{3} + \frac{1}{2 + (1 + \frac{x-1}{n})^3} + \frac{1}{2 + (1 + \frac{2(x-1)}{n})^3} + \dots + \frac{1}{2 + (1 + \frac{(n-1)(x-1)}{n})^3} \right] \right] \frac{x-1}{n}$ where $x \ge 0$. Find the equation of the tangent line to y = f(x) at x = 1.
- c Text: Find the absolute maximum and minimum values of $f(x, y) = x^2 + y^2 2y + 1$ on the set $R = \{(x, y) | x^2 + y^2 \le 4\}$.
- d Past Math 105 Final Exam: $\int \cos(\ln x) dx$.
- e Text: $\int \frac{dx}{(81+x^2)^2}$