Math 105 - April 10 Final Exam Review

1 Series

a Text: Determine if the following series converge or diverge.
i $\sum_{k=1}^{\infty} \frac{(k!)^{3}}{(3 k)!}$
ii $\sum_{k=2}^{\infty} \frac{5 \ln k}{k}$
iii $\sum_{k=1}^{\infty} \frac{2^{k} k!}{k^{k}}$
iv $\sum_{k=1}^{\infty} \frac{k^{8}}{k^{11}+3}$
v $\sum_{k=1}^{\infty} \frac{\left(k^{2}+1\right)^{1 / 3}}{\sqrt{k^{3}+2}}$
vi $\sum_{k=1}^{\infty} \frac{1}{3^{k}-2^{k}}$
vii $\sum_{k=1}^{\infty} k^{-1 / k}$
b Text: Find the values of the parameter p for which $\sum_{k=2}^{\infty} \frac{1}{k \ln k(\ln \ln k)^{p}}$ converges.
c Text: Evaluate $\sum_{k=1}^{\infty} \frac{1}{(k+1)(k+2)}$
d Text: Find the first four nonzero terms in the Taylor series centred at $x=0$ for $f(x)=\frac{e^{x}+e^{-x}}{2}$ and determine the radius of convergence.
e Text: Find the function represented by $\sum_{k=1}^{\infty} \frac{(x-2)^{k}}{3^{2 k}}$ and find the interval of convergence.

2 Continuous Probability

a From WebWork (numbers are simplified): A raffle has a grand prize of a Mediterranean cruise valued at $\$ 10,000$ with a second prize of a Las Vegas getaway valued at $\$ 2000$. If each ticket costs $\$ 10$ and 100 tickets are sold, what are the expected winnings for a ticket buyer?
b Past Math 105 Final Exam: A discrete random variable takes only two values, 0 and 1 . Find $p=\operatorname{Pr}(X=1)$ if the variance of X is $1 / 4$.
c Probability Module: Let $p(x)=\frac{1}{\beta} e^{-x / \beta}$ for $0 \leq x<\infty$ with $\beta>0$. Show this is a density function and compute $\operatorname{Pr}(X \geq 1)$ and $\mathbb{E}(X)$.
d Probability Module: Show that $f(x)=1-e^{-x}$ for $x \geq 0$ and $f(x)=0$ otherwise is a CDF.
e Probability Module: Find the constant k so that $p(x)=k \sin x$, $0 \leq x \leq \pi$ is a PDF.

3 Miscellaneous

a Text: Find the point(s) on the cone $z^{2}=x^{2}+y^{2}$ nearest the point $P(1,4,0)$.
b Past Math 105 Final Exam: Let $f(x)=\lim _{n \rightarrow \infty}\left[\left(\frac{1}{3}+\frac{1}{2+\left(1+\frac{x-1}{n}\right)^{3}}+\right.\right.$ $\left.\left.\frac{1}{2+\left(1+\frac{2(x-1)}{n}\right)^{3}}+\ldots+\frac{1}{2+\left(1+\frac{(n-1)(x-1)}{n}\right)^{3}}\right)\right] \frac{x-1}{n}$ where $x \geq 0$. Find the equation of the tangent line to $y=f(x)$ at $x=1$.
c Text: Find the absolute maximum and minimum values of $f(x, y)=$ $x^{2}+y^{2}-2 y+1$ on the set $R=\left\{(x, y) \mid x^{2}+y^{2} \leq 4\right\}$
d Past Math 105 Final Exam: $\int \cos (\ln x) d x$.
e Text: $\int \frac{d x}{\left(81+x^{2}\right)^{2}}$

