Practice Problems in Probability

Easy and Medium Difficulty Problems

Problem 1. Suppose we flip a fair coin once and observe either T for "tails" or H for "heads." Let X_{1} denote the random variable that equals 0 when we observe tails and equals 1 when we observe heads. (This is called a Bernoulli random variable.)
(a) Make a table of the PDF of X_{1} and calculate $\mathbb{E}\left(X_{1}\right)$ and $\operatorname{Var}\left(X_{1}\right)$.
(b) Now suppose that we flip a fair coin twice. We will observe one of four events: TT, TH, HT, or HH. Let X_{2} be the random variable that counts the number of heads we observe. (So X_{2} can take the values 0 , 1, or 2.) Redo part (a) for this new random variable.
(c) Let X_{3} be the random variable that counts the number of heads we observe after three successive flips of a fair coin. Redo part (a) for this new random variable.
(d) Do you notice any patterns in your calculations? Make a guess for the pdf table, the expectation and the variance of X_{4}, the random variable that counts the number of heads we observe after four successive flips of a fair coin, and then verify your guess by direct computation.

Problem 2. For any positive integer n, the random variable X_{n} defined in Problem 1 is called a binomial random variable. The PDF of the random variable is given by

$$
\operatorname{Pr}\left(X_{n}=k\right)=\frac{n!}{k!(n-k)!}\left(\frac{1}{2}\right)^{n}
$$

where k is the number of heads (or tails) in n successive and independent flips of a fair coin. (Recall that the factorial notation denotes a product of integers: n ! $=$ $1 \cdot 2 \cdot 3 \cdots(n-1) \cdot n$.)
(a) Calculate $\operatorname{Pr}\left(X_{10}=5\right)$. Interpret this probability.
(b) Calculate $\operatorname{Pr}\left(X_{100}=1\right)$ and $\operatorname{Pr}\left(X_{100}=99\right)$. Interpret this result.
(c) As we saw in the learning module, we can think of the flip of a coin as an experimental trial and the outcome - heads or tails - as a "success" or "failure". Generally speaking then, we can imagine observing the outcomes of n independent trials of some repeatable experiment, each time observing a "successful"
outcome with probability p. The number of successful trials X_{n} is thus given by a generic binomial random variable with PDF

$$
\operatorname{Pr}\left(X_{n}=k\right)=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
$$

where k is the number of successes observed in n independent trials. Calculate $\mathbb{E}\left(X_{n}\right)$, the expected number of successes in n independent trials. Does this agree with your intuition?

Problem 3. Consider a slightly different coin tossing experiment. Suppose we toss a fair coin and continue to toss it until we first observe "heads". If we let Y denote the random variable that counts the number of tosses until we first observe heads, then we see the possible values of Y are $1,2,3, \ldots$. (This is an example of a geometric random variable.)
(a) Construct a PDF table for Y. Write down a formula for $\operatorname{Pr}(Y=y)$ for any positive integer y.
(b) Construct a CDF table for Y. Use this to deduce that

$$
\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}=1
$$

Problem 4. In a manufacturing process, suppose that the probability that we produce a defective item is $\frac{1}{100}$. Let us observe the items on the production line until we find the first defective item. Denote this random variable by X and observe that X is a geometric random variable as in Problem 4.
(a) Construct a PDF table for X and compute $\operatorname{Pr}(X \leq 5)$. What is $\operatorname{Pr}(X=k)$ for any positive integer k ?
(b) Write down the CDF for X; that is, write down a formula for $\operatorname{Pr}(X \leq k)$ for any positive integer k. Use this to show explicitly that $\lim _{k \rightarrow \infty} \operatorname{Pr}(X \leq k)=1$.
(c) Compute $\operatorname{Pr}(1<X \leq 10)$ and $\operatorname{Pr}(X>10)$.

Problem 5. Recall the example of rolling a six-sided die. This is an example of a discrete uniform random variable, so named because the probability of observing each distinct outcome is the same, or uniform, for all outcomes. Let Y be the discrete uniform random variable that equals the face-value after a roll of an eight-sided die. (The die has eight faces, each with a number 1 through 8.) Calculate $\mathbb{E}(Y), \operatorname{Var}(Y)$, and $\operatorname{StdDev}(Y)$.

Problem 6. Given the following table:

x	$\operatorname{Pr}(X \leq x)$
$(-\infty, 1)$	0
$[1,3)$	$1 / 4$
$[3,4)$	$3 / 7$
$[4,7)$	$2 / 3$
$[7,8)$	$7 / 8$
$[8, \infty)$	1

(a) Graph the CDF and PDF of X.
(b) Find a constant c such that $\operatorname{Pr}(X \leq c)=\frac{7}{8}$.
(c) Find a constant c such that $\operatorname{Pr}(X<c)=\frac{2}{3}$.
(d) Find a constant c such that $\operatorname{Pr}(X>c)=\frac{4}{7}$.
(e) Find constants c_{1}, c_{2} such that $\operatorname{Pr}\left(c_{1} \leq X<c_{2}\right)=\frac{3}{4}$.

Problem 7. Using properties of sums, show that $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2}$, for any discrete random variable X.

Problem 8. Repeat Problem 7 for any continuous random variable X, using properties of integrals.

Problem 9. Are the following functions PDF's?
(a) $f(x)= \begin{cases}12 x^{2}(x-1) & \text { if } 0<x<1 \\ 0 & \text { if otherwise }\end{cases}$
(b) $f(x)= \begin{cases}1-|x| & \text { if }|x| \leq 1 \\ 0 & \text { if otherwise }\end{cases}$
(c) $f(x)= \begin{cases}\frac{\pi}{2} \cos (\pi x) & \text { if }|x|<\frac{1}{2} \\ 0 & \text { if otherwise }\end{cases}$
(d) $f(x)= \begin{cases}\frac{1}{2} & \text { if }|x| \leq 2 \\ 0 & \text { if otherwise }\end{cases}$

Problem 10. For the functions in Problem 9 that you found to be probability density functions, find the corresponding cumulative distribution functions.

Problem 11. Are the following functions CDF's?
(a) $F(x)= \begin{cases}0 & \text { if } x<-\frac{\pi}{2} \\ \frac{\sin (x-\pi / 2)+1}{2} & \text { if }|x| \leq \frac{\pi}{2} \\ 1 & \text { if } x>\frac{\pi}{2}\end{cases}$
(b) $F(x)= \begin{cases}0 & \text { if } x<0 \\ \frac{1-\cos (x)}{2} & \text { if } 0 \leq x \leq \pi \\ 1 & \text { if } x>\pi\end{cases}$
(c) $F(x)= \begin{cases}0 & \text { if } x<-1 \\ 1+x & \text { if }-1 \leq x<0 \\ x & \text { if } 0 \leq x \leq 1 \\ 1 & \text { if } x>1\end{cases}$
(d) $F(x)=\arctan (x)+\frac{\pi}{2}$

Problem 12. For the functions in Problem 11 that you found to be cumulative distribution functions, find the corresponding probability density functions.

Problem 13. Show that $e^{-x} e^{-e^{-x}}$ on $x \in \mathbb{R}$ is a PDF.
Problem 14. What is the CDF of the density function $\frac{1}{\pi\left(1+x^{2}\right)}$?
Problem 15. Show that $p(x)=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}$ on $x \in \mathbb{R}$ is a PDF.
Problem 16. Show that $f(x)=\left\{\begin{array}{ll}1-e^{-x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{array}\right.$ is a CDF.
Problem 17. Find the constant k that makes the following functions PDF's on the given domains.
(a) $p(x)=k \sin (x), 0<x<\pi$
(b) $p(x)=k x^{2}(x-1)^{2}, 0<x<1$
(c) $p(x)=k x(1-x)^{3}, 0<x<1$
(d) $p(x)=k,-1 \leq x \leq 3$
(e) $p(x)=k x^{3} e^{-\frac{x}{2}}, x \geq 0$.

Problem 18. For the PDF's in Problem 15, compute the expectations, variances and standard deviations of their associated random variables.

Problem 19. Let Z be a standard normal random variable (the classic "bell curve"), given by the density

$$
\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

Verify that $\mathbb{E}(Z)=0$.
Problem 20. Expectations (and variances) need not be finite. Let Y be a Cauchy random variable given by the PDF: $p(x)=\frac{1}{\pi\left(1+x^{2}\right)}$, for $x \in \mathbb{R}$.
(a) Prove that $\mathbb{E}(X)$ does not exist (i.e. the expectation is infinite).
(b) Prove that $\mathbb{E}\left(X^{2}\right)$ does not exist.

Problem 21. Let $p(x)=\frac{1}{\beta} e^{-\frac{x}{\beta}}$, for $0 \leq x<\infty, \beta>0$, an exponential random variable with parameter β.
(a) Show that this density integrates to 1 .
(b) Calculate $\operatorname{Pr}(X \geq 1), \mathbb{E}(X)$ and $\operatorname{Std} \operatorname{Dev}(X)$, for the exponential random variable X.
(c) Sketch the PDF of X for $\beta=\frac{1}{10}, \frac{1}{2}, 1,5$.
(d) Find the CDF of X in general.

Problem 22. Show that, for any continuous random variable $X, \operatorname{Pr}(X \leq x)=\operatorname{Pr}(x<$ $x)$. Give a counterexample to show that this equality does not hold if X is a discrete random variable.

Problem 23. Prove that $\operatorname{Pr}(X \leq x)=1-\operatorname{Pr}(X>x)$ first for discrete random variables, then for continuous random variables.

Problem 24. Let X be a Laplace random variable given by the PDF: $p(x)=\frac{1}{2} e^{-|x|}$, for $x \in \mathbb{R}$.
(a) Verify that $p(x)$ is in fact a valid pdf.
(b) Calculate $\operatorname{Pr}(|X| \geq 1), \mathbb{E}(X)$, and $\operatorname{StdDev}(X)$.
(c) Sketch the PDF of X.
(d) Find an explicit formula for the CDF of X.

Problem 25. Let Y be a continuous uniform random variable on the interval $[a, b]$.
(a) Graph the PDF and CDF of Y. Is the CDF continuous everywhere? Is the CDF differentiable everywhere?
(b) Calculate $\mathbb{E}(Y), \operatorname{Var}(Y)$, and $\operatorname{StdDev}(Y)$.

Problem 26. Show that $\mathbb{E}(X) \leq \sqrt{\mathbb{E}\left(X^{2}\right)}$ for any random variable X.
Problem 27. Let X be a normal random variable with mean $\mu=-1$ and variance $\sigma^{2}=100$. Given that $\operatorname{Pr}(Z \geq 1)=0.1587$, where Z is a standard normal random variable,
(a) calculate $\operatorname{Pr}(X \geq 9)$
(b) calculate $\operatorname{Pr}(-11 \leq X \leq 9)$
(c) calculate $\operatorname{Pr}(|X+1|>10)$

Problem 28. (from "Mathematical Statistics with Applications", by Wackerly, Mendenhall, and Scheaffer)
The weekly amount of money spent on maintenance and repairs by a company was observed, over a long period of time, to be approximately normally distributed with mean $\$ 400$ and standard deviation $\$ 20$. If $\$ 450$ is budgeted for next week, what is the probability that the actual costs will exceed the budgeted amount? You may use the fact that $\operatorname{Pr}(Z \leq-2.5)=0.0062$, where Z is a standard normal random variable.

Problem 29. The final numerical grades of college students in a certain large biology class are approximately normally distributed with mean 74.1 and standard deviation 9.6. You may use the fact that $\operatorname{Pr}(Z \geq 1.47)=0.0708$, where Z is a standard normal random variable.
(a) What percentage of students would we expect to pass the course if a final grade of 60 or higher is required to pass?
(b) What percentage of students would we expect to receive a final grade greater than the mean?
(c) If final grades were not normally distributed, but still had a mean of 74.1 and standard deviation of 9.6 , would your answer to part (b) change?

A Few Challenging Problems:

Problem 30. A Poisson random variable X is given by the pdf

$$
\operatorname{Pr}(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}, \text { for } \lambda \geq 0, x=0,1,2, \ldots
$$

(a) Use Taylor series to show that $\sum_{x=0}^{\infty} \operatorname{Pr}(X=x)=1$.
(b) Use Taylor series to show that $\mathbb{E}(X)=\lambda$.
(c) Use Taylor series to show that $\operatorname{Var}(X)=\lambda$. (Hint: Compute $\mathbb{E}[X(X-1)]$.)

Problem 31. Technically, a function $f(x)$ is a cumulative distribution function if and only if it is nondecreasing, $\lim _{x \rightarrow-\infty} f(x)=0, \lim _{x \rightarrow \infty} f(x)=1$ and if $f(x)$ is continuous from the right. For example, the function $f_{1}(x)=\left\{\begin{array}{ll}1 & \text { if } x \geq 0, \\ 0 & \text { if } x<0\end{array}\right.$ is a CDF, while the function $f_{2}(x)=\left\{\begin{array}{ll}1 & \text { if } x>0, \\ 0 & \text { if } x \leq 0\end{array}\right.$ is not a CDF. Considering these examples, why does this technical requirement make intuitive sense?

Problem 32. Recall that the average value of a function on the interval $[a, b]$ is given by $f_{\text {avg }}(a, b)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$. Let X be a (continuous) uniform random variable on $[a, b]$. Define the new random variable $Y=f(X)$ for any strictly increasing function f. Show that $\mathbb{E}(Y)=f_{\text {avg }}(a, b)$. Interpret this result.

Problem 33. Verify that $\operatorname{Var}(Z)=1$ for a standard normal random variable Z. Use this result to verify that $\operatorname{Var}(X)=\sigma^{2}$ for a generic normally distributed random variable $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$.

