Question 1

a. (8 pts) Find constants A, B, C, and D so that

$$
\frac{x^{3}-8 x+4}{x(x-1)(x-2)}=A+\frac{B}{x}+\frac{C}{x-1}+\frac{D}{x-2} .
$$

b. (8 pts) Compute the indefinite integral

$$
\int \sec ^{3} x \tan ^{3} x d x
$$

c. (8 pts) Suppose Simpson's Rule with $n=20$ was used to estimate

$$
\int_{0}^{\pi} x^{4}+\sin (2 x) d x
$$

Find, with justification, a reasonable upper bound for the absolute error of this approximation.
d. (8 pts) Let Z be a continuous random variable with a standard normal distribution. Recall that the probability density function of Z is

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

Suppose we define a new function $H(x)$ in terms of the probability

$$
H(x)=\operatorname{Pr}\left(-x^{2}<Z<x^{2}\right) .
$$

Find a formula for $H^{\prime}(x)$. Your final answer must not contain any derivative or integral signs.
e. (8 pts) Consider the improper integral

$$
\int_{-1}^{8} x^{-5 / 3} d x
$$

Determine whether this integral converges or diverges. If it converges, then calculate its value.
f. (10 pts) Calculate the following integral using a suitable trigonometric substitution:

$$
\int \frac{d x}{x^{2} \sqrt{x^{2}-1}} d x
$$

Simplify your final answer so that it doesn't contain any trigonometric functions.

Question 2

(15 pts) Compute the definite integral

$$
\int_{0}^{\pi / 2}\left(\sin ^{3} x\right) e^{\cos x} d x
$$

Question 3

A certain continuous random variable X is known to have a cumulative distribution function of the form

$$
F(x)= \begin{cases}a, & \text { if } x<0 \\ \frac{1}{2} x^{2}+k x, & \text { if } 0 \leq x \leq 1 \\ b, & \text { if } x>1\end{cases}
$$

where a, b, and k are constants.
a. (6 pts) Determine the exact values of a, b, and k using the fact that $F(x)$ is the CDF of the continuous random variable X.
b. (6 pts) What is the expected value of X ?
c. (8 pts) What is the the standard deviation of X ?

Question 4

(15 pts) Find the solution of the differential equation

$$
\frac{d y}{d t}=e^{y-\ln t}
$$

that satisfies the initial condition $y(1)=-1$.

