Math 105 - Practice Midterm 2

1 Compute the following:
a $\frac{d}{d x} \int_{x}^{2} \frac{1}{1+t^{3}} d t$
Solution: We rewrite this as $-\frac{d}{d x} \int_{2}^{x} \frac{1}{1+t^{3}} d t$ and apply the Fundamental Theorem of Calculus to yield $-\frac{1}{1+x^{3}}$.
b $\int_{-\infty}^{\infty} x d x$
Solution: This needs to be split into two improper integrals because it ranges over $(-\infty, \infty)$. If the integral converges, $I=\int_{-\infty}^{0} x d x+$ $\int_{0}^{\infty} x d x$. Both must converge for the integral to converge.
Note that $\int_{0}^{\infty} x d x=\lim _{R \rightarrow \infty} \int_{0}^{R} x d x=\left.\lim _{R \rightarrow \infty} \frac{x^{2}}{2}\right|_{0} ^{R}=\infty$. Thus I diverges and we don't even need to consider the other integral.
c $\int_{0}^{\infty} \frac{d x}{x^{1 / 2}+x^{3 / 2}}$
Solution: This integral is improper for two reasons: the vertical asymptote at $x=0$ and the infinite range of integration. We split it into $\int_{0}^{1} \frac{d x}{x^{1 / 2}+x^{3 / 2}}+\int_{1}^{\infty} \frac{d x}{x^{1 / 2}+x^{3 / 2}}$. Both must converge for the integral to converge.
Making a substitution $u=x^{1 / 2}$ with $d u=\frac{1}{2 x^{1 / 2}} d x$ so $d x=2 u d u$ in both integrals, we have $\int \frac{d x}{x^{1 / 2}+x^{3 / 2}}=\int \frac{2}{1+u^{2}} d u=2 \arctan u+C=$ $2 \arctan \sqrt{x}+C$.
Thus, $\int_{0}^{\infty} \frac{d x}{x^{1 / 2}+x^{3 / 2}}=\left.\lim _{t \rightarrow 0^{+}} 2 \arctan \sqrt{x}\right|_{t} ^{1}+\left.\lim _{R \rightarrow \infty} 2 \arctan \sqrt{x}\right|_{1} ^{R}=$ $2(\pi / 4-0)+2(\pi / 2-\pi / 4)=\pi$.
d $\int \frac{d y}{1+\cos (4 y)}$
Solution: We write $1+\cos (4 y)=2 \cos ^{2}(2 y)$. Thus, $\int \frac{d y}{1+\cos (4 y)}=$ $\int \frac{1}{2} \sec ^{2}(2 y)=\frac{1}{4} \tan (2 y)+C$.
e $\int\left(\ln \left(x^{8}\right)\right)^{5} d x$
Solution: First of all we pull out the 8 to find $\int(8 \ln x)^{5} d x=8^{5} \int \ln ^{5} x d x$.
This will involve multiple integration-by-parts. We'll first note that $\int \ln ^{n} x d x=\int \ln ^{n} x 1 d x$ so that if $f=\ln ^{n} x$ with $d f=n\left(\ln ^{n-1} x\right) \frac{1}{x}$ and $d g=d x$ with $g=x$ then $\int \ln ^{n} x d x=x \ln ^{n} x-n \int \ln ^{n-1} x d x$. Life is good now:
$8^{5} \int \ln ^{5} x d x=8^{5}\left(x \ln ^{5} x-5 \int \ln ^{4} x d x\right)=8^{5}\left(x \ln ^{5} x-5\left(x \ln ^{4} x-\right.\right.$
$\left.\left.\int 4 \ln ^{3} x d x\right)\right)=8^{5}\left(x \ln ^{5} x-5 x \ln ^{4} x+20\left(\int \ln ^{3} x d x\right)\right) \underbrace{=}_{\text {guess pattern }} 8^{5}\left(x \ln ^{5} x-\right.$
$\left.5 x \ln ^{4} x+5 \times 4 x \ln ^{3} x-5 \times 4 \times 3 x \ln ^{2} x+5 \times 4 \times 3 \times 2 \ln x-5 \times 4 \times 3 \times 2 \times 1 x\right)$ $=8^{5}\left(x \ln ^{5} x-5 x \ln ^{4} x+20 x \ln ^{3} x-60 x \ln ^{2} x+120 x \ln x-120 x\right)+C$.
This result can be verified by taking a derivative.
f $\int\left(\tan ^{2} t \sec t-\tan ^{3} t \sec t\right) d t$
Solution: We split the integral into two, as they require different strategies.

- $I=\int \tan ^{2} t \sec t d t=\int\left(\sec ^{2} t-1\right) \sec t d t=\int \sec ^{3} t-\int \sec t d t$.

To find $\int \sec ^{3} t d t=\int \sec t \sec ^{2} t d t$ we integrate by parts setting $f=\sec t$ so $d f=\sec t \tan t d t$ and $d g=\sec ^{2} t$ so $g=\tan t$. Then $\int \sec ^{3} t d t=\sec t \tan t-\int \tan ^{2} t \sec t d t=\sec t \tan t-\int\left(\sec ^{2} t-1\right) \sec t d t$ so that $\int \sec ^{3} t d t=\sec t \tan t-\int \sec ^{3} t d t+\int \sec t d t$. Rearranging and using $\int \sec t d t=\ln |\sec t+\tan t|+C$ gives us $\int \sec ^{3} t=$ $\frac{1}{2}(\sec t \tan t+\ln |\sec t+\tan t|)+C$.
Therefore part I is $\frac{1}{2} \ln |\sec t+\tan t|-\frac{1}{2} \sec t \tan t+C$.

- Now we consider $I I=\int \tan ^{3} t \sec t d t=\int \tan ^{2} t \sec t \tan t d t$ (we pulled out a factor of $\sec t \tan t$, the derivative of $\sec t$). We then use $\tan ^{2} t=\sec ^{2} t-1$ so that $I I=\int\left(\sec ^{2} t-1\right) \sec t \tan t d t$ and by letting $u=\sec t$ we have $\int\left(u^{2}-1\right) d u=\frac{u^{3}}{3}-u+C=\frac{\sec ^{3} t}{3}-\sec t+C$.
- The final result is $\frac{1}{2} \ln |\sec t+\tan t|-\frac{1}{2} \sec t \tan t-\frac{\sec ^{3} t}{3}+\sec t+C$.
$\mathrm{g} \int \frac{d y}{y\left(y^{2}-1\right)}$
Solution: This requires partial fractions. We consider $\frac{1}{y(y+1)(y-1)}=$ $\frac{A}{y}+\frac{B}{y+1}+\frac{C}{y-1}$. Multiplying by the common denominator yields: $1=A(y+1)(y-1)+B y(y-1)+C y(y+1)$.
We can find A, B, and C by selecting convenient values of y. Setting $y=0$ yields $1=-A$ so $A=-1$. Setting $y=1$ yields $1=2 C$ so $C=1 / 2$. And setting $y=-1$ yields $1=2 B$ so $B=1 / 2$.
Then $\int \frac{d y}{y\left(y^{2}-1\right)}=\int\left(\frac{-1}{y}+\frac{1 / 2}{y+1}+\frac{1 / 2}{y-1}\right) d y=-\ln |y|+\frac{1}{2} \ln |y+1|+$ $\frac{1}{2} \ln |y-1|+C$.
h $\int_{-2}^{3} \frac{d w}{w}$
Solution: This integral is improper due to the vertical asymptote at $x=0$. To exist we require both $\int_{-2}^{0} \frac{d w}{w}$ and $\int_{0}^{3} \frac{d w}{w}$ to exist.
Looking just at $\int_{-2}^{0} \frac{d w}{w}=\lim _{t \rightarrow 0^{-}} \int_{-2}^{t} \frac{d w}{w}=\left.\lim _{t \rightarrow 0^{-}} \ln |w|\right|_{-2} ^{t}=-\infty$ because ln goes to $-\infty$ as its argument goes to zero.
Thus the entire integral diverges.
i $\int\left(100-x^{2}\right)^{3 / 2} d x$
Solution: We use trigonometric substitution. We set $x=10 \sin \theta$ so that $d x=10 \cos \theta d \theta$ and $100-x^{2}=100 \cos ^{2} \theta$. This yields: $\int\left(1000 \cos ^{3} \theta\right) 10 \cos \theta d \theta=10^{4} \int \cos ^{4} \theta d \theta$.
Here we employ double-angle identities where $\cos ^{2} \theta=\frac{1+\cos (2 \theta)}{2}$.
We have $10^{4} \int\left(\frac{1+\cos (2 \theta)}{2}\right)^{2} d \theta=\frac{10^{4}}{4} \int\left(1+2 \cos (2 \theta)+\cos ^{2}(2 \theta)\right) d \theta$.
Trivially, $\int d \theta=\theta+C$ and $\int 2 \cos (2 \theta) d \theta=\sin (2 \theta)+C$.
Then $\int \cos ^{2}(2 \theta) d \theta=\int \frac{1+\cos (4 \theta)}{2} d \theta=\frac{\theta}{2}+\frac{1}{8} \sin (4 \theta)+C$.
The net trig integral result is $\frac{10^{4}}{4}\left(\sin (2 \theta)+\frac{3 \theta}{2}+\frac{1}{8} \sin (4 \theta)\right)+C$.
Using $\sin (2 \theta)=2 \sin \theta \cos \theta$ and $\sin (4 \theta)=2 \sin (2 \theta) \cos (2 \theta)=4 \sin \theta \cos \theta\left(2 \cos ^{2} \theta-\right.$

1) the final result is:

$$
\frac{10^{4}}{4}\left(2 \sin \theta \cos \theta+\frac{3 \theta}{2}+\frac{1}{2} \sin \theta \cos \theta\left(2 \cos ^{2} \theta-1\right)\right)+C .
$$

If $x=10 \sin \theta$ then $\sin \theta=x / 10$ and $\cos \theta=\sqrt{1-x^{2} / 100}=\frac{1}{10} \sqrt{100-x^{2}}$ and $\theta=\arcsin (x / 10)$.
The integral is $\frac{10^{4}}{4}\left(\frac{3}{2} \arcsin (x / 10)+2 \frac{x}{10} \frac{\sqrt{100-x^{2}}}{10}+\frac{1}{2} \frac{x}{10} \frac{\sqrt{100-x^{2}}}{10}\left(2 \frac{100-x^{2}}{100}-\right.\right.$ 1)) $+C$ which simplifies to $3750 \arcsin (x / 10)+\frac{150}{4} x \sqrt{100-x^{2}}+$ $\frac{1}{4} x\left(100-x^{2}\right)^{3 / 2}+C$.
j The cumulative distribution function and standard deviation of X the number of "heads" in 4 flips of a fair coin.
Solution: There are 16 possible outcomes:
НННН, НННТ, ННТН, ННТТ,
НTH H, HTHT, HTTH, HTTT,
ТН H H, TH HT, THTH, THTT,
TTH H, TTHT, TTTH, TTTT.
From 16 outcomes, 1 involves no heads, 4 involve one heads, 6 involve two heads, 4 involve three heads, and 1 involves four heads.
Therefore, $\operatorname{Pr}(X=0)=1 / 16, \operatorname{Pr}(X=1)=4 / 16=1 / 4, \operatorname{Pr}(X=$ $2)=6 / 16=3 / 8, \operatorname{Pr}(X=3)=4 / 16=1 / 4$ and $\operatorname{Pr}(X=4)=1 / 16$.
Therefore $\bar{X}=0 \times 1 / 16+1 \times 1 / 4+2 \times 3 / 8+3 \times 1 / 4+4 \times 1 / 16=2$. To find the variance (and standard deviation) we will find $\mathbb{E}\left(X^{2}\right)=$ $0^{2} \times 1 / 16+1^{2} \times 1 / 4+2^{2} \times 3 / 8+3^{2} \times 1 / 4+4^{2} \times 1 / 16=80 / 16$. Therefore, $\operatorname{Var}(X)=80 / 16-2^{2}=16 / 16=1$ and $\sigma=\sqrt{1}=1$.

2 Use Simpson's rule with $n=6$ to approximate $\int_{0}^{1} \sqrt{1+x} d x$. Use the error bound formula to bound the error in your approximation.
Solution: If $n=6$ then $\Delta x=\frac{1-0}{6}=1 / 6$ and $x_{0}=0, x_{1}=1 / 6, x_{2}=$ $2 / 6=1 / 3, x_{3}=3 / 6=1 / 2, x_{4}=4 / 6=2 / 3, x_{5}=5 / 6, x_{6}=1$.
We compute $S(6)=\frac{1 / 6}{3}(\sqrt{1}+\sqrt{1+1 / 6}+\sqrt{1+1 / 3}+\sqrt{1+1 / 2}+\sqrt{1+2 / 3}+$ $\sqrt{1+5 / 6}+\sqrt{2})$.
To bound the error, we let $f(x)=(1+x)^{1 / 2}, f^{\prime}(x)=\frac{1}{2}(1+x)^{-1 / 2}$, $f^{\prime \prime}(x)=\frac{-1}{4}(1+x)^{-3 / 2}, \frac{3}{8}(1+x)^{-5 / 2}$, and $f^{(4)}(x)=\frac{-15}{16}(1+x)^{-7 / 2}$.
Over $[0,1],\left|f^{4}(x)\right|=\frac{15}{16}(1+x)^{-7 / 2} \leq \frac{15}{16}$. The error is bounded by $\frac{15 / 16 \times(1-0)^{5}}{180 \times 6^{4}}$.
3 You deposit $\$ 10,000$ into a bank account that is compounded continuously at rate 0.02. After this initial deposit, you withdraw money at a constant rate of $\$ W$ per year. After 11 years, your account is empty. What was your withdrawal rate?
Solution: We will find the amount in the account $A(t)$ after t years. With continuously compounded interest, $A^{\prime}(t)$ includes a term $0.02 A$. With a continuous withdrawal of $W, A^{\prime}(t)$ also contains a component of $-W$. Therefore $A^{\prime}(t)=\frac{d A}{d t}=0.02 A-W$.
Separating variables and integrating yields: $\int \frac{d A}{0.02 A-W}=\int d t$ or that $50 \ln |0.02 A-W|=t+C$. Therefore, $|0.02 A-W|=e^{t / 50} e^{C / 50}$. We remove the absolute values and choose a new arbitrary constant $B= \pm e^{C / 50}$: $0.02 A-W=B e^{t / 50}$. Thus $A=50\left(W+B e^{t / 50}\right)$.
Given $A(0)=10000$ we must have $10000=50(W+B)$ so $B=200-W$.
$A(t)=50\left(W+(200-W) e^{t / 50}\right)$. If the account has zero balance at $t=11$, then $W+(200-W) e^{11 / 50}=0$ so $W=200 e^{11 / 50} /\left(e^{11 / 50}-1\right) \$ / \mathrm{yr}$.

4 Consider $f(x)=A \sin ^{2} x$ on $[0,2 \pi]$. For what value of A is $f(x)$ a probability density function for a random variable X on $[0,2 \pi]$? For this value of A, what are the mean and variance of X ?

Solution:

- To be a PDF, we need $f(x) \geq 0$ and $\int_{0}^{2 \pi} f(x) d x=1$.
$\int_{0}^{2 \pi} A \sin ^{2} x d x=A \int_{0}^{2 \pi} \frac{1-\cos (2 x)}{2} d x=\left.A\left(\frac{x}{2}-\frac{1}{2} \sin (2 x)\right)\right|_{0} ^{2 \pi}=A \pi=1$ so $A=1 / \pi$. Note this value of A ensures $f(x) \geq 0$, too.
- To find the mean, we compute $\bar{X}=\int_{0}^{2 \pi} x p(x) d x=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(1-\cos (2 x)) d x=$ $\frac{1}{2 \pi}\left(\int_{0}^{2 \pi} x d x-\int_{0}^{2 \pi} x \cos (2 x) d x\right)$.
We apply integration by parts on the integrand $x \cos (2 x)$ letting $u=x$ with $d u=d x$ and $d v=\cos (2 x) d x$ and $v=\frac{1}{2} \sin (2 x)$. Then $\int x \cos (2 x) d x=$ $x \frac{1}{2} \sin (2 x)-\int \frac{1}{2} \sin (2 x) d x=\frac{x}{2} \sin (2 x)+\frac{1}{4} \cos (2 x)+C$.
The mean is therefore $\frac{1}{2 \pi}\left(\frac{x^{2}}{2}-\frac{x}{2} \sin (2 x)-\left.\frac{1}{4} \cos (2 x)\right|_{0} ^{2 \pi}\right)=\pi$.
- To find the variance, we will compute $\mathbb{E}\left(X^{2}\right)$ first.
$\mathbb{E}\left(X^{2}\right)=\int_{0}^{2 \pi} x^{2} p(x) d x=\frac{1}{2 \pi}\left(\int_{0}^{2 \pi} x^{2} d x-\int_{0}^{2 \pi} x^{2} \cos (2 x) d x\right)$
The integrand $x^{2} \cos (2 x)$ also requires integration by parts steps. Setting $u=x^{2}$ and $d v=\cos (2 x) d x$ so that $d u=2 x d x$ and $v=\frac{1}{2} \sin (2 x)$ gives $\int x^{2} \cos (2 x) d x=\frac{x^{2}}{2} \sin (2 x)-\int x \sin (2 x) d x$.
We integrate by parts once more on $\int x \sin (2 x) d x$ with $u=x$ and $d v=$ $\sin (2 x) d x$ so that $d u=d x$ and $v=\frac{-1}{2} \cos (2 x)$. Thus, $\int x \sin (2 x) d x=$ $\frac{-x}{2} \cos (2 x)+\int \frac{1}{2} \cos (2 x) d x=\frac{-x}{2} \cos (2 x)+\frac{1}{4} \sin (2 x)+C$.
Finally, $\frac{1}{2 \pi} \int_{0}^{2 \pi} x^{2}(1-\cos (2 x)) d x=\frac{1}{2 \pi}\left(\frac{x^{3}}{3}-\frac{x^{2}}{2} \sin (2 x)-\frac{x}{2} \cos (2 x)+\right.$ $\left.\frac{1}{4} \sin (2 x)\right)\left.\right|_{0} ^{2 \pi}=\frac{4 \pi^{2}}{3}-\frac{1}{2}$.
The variance is $\mathbb{E}\left(X^{2}\right)-\bar{X}^{2}=\frac{\pi^{2}}{3}-\frac{1}{2}$.
5 In a large clinical trial, the resting heart rate of the patients was normally distributed with a mean of 70 bpm and standard deviation of 6 bpm . What is the median heart rate? What is the 75th percentile? What fraction of patients had resting heart rates below 60?
Solution: We will consider the table here for illustration.
- By symmetry, the median will be the mean for a normal distribution.
- We let X be the resting heart rate. For the 75 th percentile, we seek s so that $\operatorname{Pr}(X \leq s)=0.75$ i.e. $\operatorname{Pr}\left(\frac{X-70}{6} \leq \frac{s-70}{6}\right)=\operatorname{Pr}\left(Z \leq \frac{s-70}{6}\right)=0.75$.
From a z-score table, we see $\operatorname{Pr}(Z \leq 0.68) \approx 0.75$ (see green circle). Therefore $\frac{s-70}{6} \approx 0.68$ so the 75 th percentile is approximately $s=74.08$ beats per minute.
- $\operatorname{Pr}(X \leq 60)=\operatorname{Pr}\left(\frac{X-70}{6} \leq \frac{60-70}{6}\right) \approx \operatorname{Pr}(Z \leq-1.67)$.

Often tables such as the one included here give $\operatorname{Pr}(Z \leq a)$ for $a>0$, so let's work with that...
$\operatorname{Pr}(Z \leq-1.67)=\operatorname{Pr}(Z \geq 1.67)=1-\operatorname{Pr}(Z \leq 1.67)=1-0.9525=0.0475$ (see red circle).

Tables of the Normal Distribution

