
Math 105 - Practice Midterm 2

1 Compute the following:

a d
dx

∫ 2

x
1

1+t3 dt

Solution: We rewrite this as − d
dx

∫ x
2

1
1+t3 dt and apply the Funda-

mental Theorem of Calculus to yield − 1
1+x3 .

b
∫∞
−∞ xdx

Solution: This needs to be split into two improper integrals because

it ranges over (−∞,∞). If the integral converges, I =
∫ 0

−∞ xdx +∫∞
0
xdx. Both must converge for the integral to converge.

Note that
∫∞
0
xdx = limR→∞

∫ R
0
xdx = limR→∞

x2

2 |
R
0 = ∞. Thus I

diverges and we don’t even need to consider the other integral.

c
∫∞
0

dx
x1/2+x3/2

Solution: This integral is improper for two reasons: the vertical
asymptote at x = 0 and the infinite range of integration. We split it

into
∫ 1

0
dx

x1/2+x3/2 +
∫∞
1

dx
x1/2+x3/2 . Both must converge for the integral

to converge.

Making a substitution u = x1/2 with du = 1
2x1/2 dx so dx = 2udu in

both integrals, we have
∫

dx
x1/2+x3/2 =

∫
2

1+u2 du = 2 arctanu + C =

2 arctan
√
x+ C.

Thus,
∫∞
0

dx
x1/2+x3/2 = limt→0+ 2 arctan

√
x|1t+limR→∞ 2 arctan

√
x|R1 =

2(π/4− 0) + 2(π/2− π/4) = π.

d
∫

dy
1+cos(4y)

Solution: We write 1 + cos(4y) = 2 cos2(2y). Thus,
∫

dy
1+cos(4y) =∫

1
2 sec2(2y) = 1

4 tan(2y) + C.

e
∫

(ln(x8))5dx

Solution: First of all we pull out the 8 to find
∫

(8 lnx)5dx = 85
∫

ln5 xdx.

This will involve multiple integration-by-parts. We’ll first note that∫
lnn xdx =

∫
lnn x1dx so that if f = lnn x with df = n(lnn−1 x) 1

x

and dg = dx with g = x then
∫

lnn xdx = x lnn x − n
∫

lnn−1 xdx.
Life is good now:

85
∫

ln5 xdx = 85(x ln5 x − 5
∫

ln4 xdx) = 85(x ln5 x − 5(x ln4 x −∫
4 ln3 xdx)) = 85(x ln5 x−5x ln4 x+20(

∫
ln3 xdx)) =︸︷︷︸

guess pattern

85(x ln5 x−

5x ln4 x+5×4x ln3 x−5×4×3x ln2 x+5×4×3×2 lnx−5×4×3×2×1x)
= 85(x ln5 x− 5x ln4 x+ 20x ln3 x− 60x ln2 x+ 120x lnx− 120x) +C.

This result can be verified by taking a derivative.
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f
∫

(tan2 t sec t− tan3 t sec t)dt

Solution: We split the integral into two, as they require different
strategies.

• I =
∫
tan2t sec tdt =

∫
(sec2 t− 1) sec tdt =

∫
sec3 t−

∫
sec tdt.

To find
∫

sec3 tdt =
∫

sec t sec2 tdt we integrate by parts setting
f = sec t so df = sec t tan tdt and dg = sec2 t so g = tan t. Then∫

sec3 tdt = sec t tan t−
∫

tan2 t sec tdt = sec t tan t−
∫

(sec2 t−1) sec tdt
so that

∫
sec3 tdt = sec t tan t −

∫
sec3tdt +

∫
sec tdt. Rearrang-

ing and using
∫

sec tdt = ln | sec t + tan t| + C gives us
∫

sec3 t =
1
2 (sec t tan t+ ln | sec t+ tan t|) + C.

Therefore part I is 1
2 ln | sec t+ tan t| − 1

2 sec t tan t+ C.

• Now we consider II =
∫

tan3 t sec tdt =
∫

tan2 t sec t tan tdt (we
pulled out a factor of sec t tan t, the derivative of sec t). We then use
tan2 t = sec2 t−1 so that II =

∫
(sec2 t−1) sec t tan tdt and by letting

u = sec t we have
∫

(u2 − 1)du = u3

3 − u+ C = sec3 t
3 − sec t+ C.

• The final result is 1
2 ln | sec t+tan t|− 1

2 sec t tan t− sec3 t
3 +sec t+C.

g
∫

dy
y(y2−1)

Solution: This requires partial fractions. We consider 1
y(y+1)(y−1) =

A
y + B

y+1 + C
y−1 . Multiplying by the common denominator yields:

1 = A(y + 1)(y − 1) +By(y − 1) + Cy(y + 1).

We can find A,B, and C by selecting convenient values of y. Setting
y = 0 yields 1 = −A so A = −1. Setting y = 1 yields 1 = 2C so
C = 1/2. And setting y = −1 yields 1 = 2B so B = 1/2.

Then
∫

dy
y(y2−1) =

∫
(−1y + 1/2

y+1 + 1/2
y−1 )dy = − ln |y| + 1

2 ln |y + 1| +
1
2 ln |y − 1|+ C.

h
∫ 3

−2
dw
w

Solution: This integral is improper due to the vertical asymptote at

x = 0. To exist we require both
∫ 0

−2
dw
w and

∫ 3

0
dw
w to exist.

Looking just at
∫ 0

−2
dw
w = limt→0−

∫ t
−2

dw
w = limt→0− ln |w||t−2 = −∞

because ln goes to −∞ as its argument goes to zero.

Thus the entire integral diverges.

i
∫

(100− x2)3/2dx

Solution: We use trigonometric substitution. We set x = 10 sin θ so
that dx = 10 cos θdθ and 100− x2 = 100 cos2 θ. This yields:∫

(1000 cos3 θ)10 cos θdθ = 104
∫

cos4 θdθ.

Here we employ double-angle identities where cos2 θ = 1+cos(2θ)
2 .

We have 104
∫

( 1+cos(2θ)
2 )2dθ = 104

4

∫
(1 + 2 cos(2θ) + cos2(2θ))dθ.

Trivially,
∫
dθ = θ + C and

∫
2 cos(2θ)dθ = sin(2θ) + C.

Then
∫

cos2(2θ)dθ =
∫ 1+cos(4θ)

2 dθ = θ
2 + 1

8 sin(4θ) + C.

The net trig integral result is 104

4 (sin(2θ) + 3θ
2 + 1

8 sin(4θ)) + C.

Using sin(2θ) = 2 sin θ cos θ and sin(4θ) = 2 sin(2θ) cos(2θ) = 4 sin θ cos θ(2 cos2 θ−
1) the final result is:
104

4 (2 sin θ cos θ + 3θ
2 + 1

2 sin θ cos θ(2 cos2 θ − 1)) + C.
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If x = 10 sin θ then sin θ = x/10 and cos θ =
√

1− x2/100 = 1
10

√
100− x2

and θ = arcsin(x/10).

The integral is 104

4 ( 3
2 arcsin(x/10)+2 x

10

√
100−x2

10 + 1
2
x
10

√
100−x2

10 (2 100−x2

100 −
1)) + C which simplifies to 3750 arcsin(x/10) + 150

4 x
√

100− x2 +
1
4x(100− x2)3/2 + C.

j The cumulative distribution function and standard deviation of X
the number of “heads” in 4 flips of a fair coin.

Solution: There are 16 possible outcomes:
HHHH,HHHT,HHTH,HHTT,
HTHH,HTHT,HTTH,HTTT,
THHH,THHT, THTH, THTT ,
TTHH,TTHT, TTTH, TTTT .

From 16 outcomes, 1 involves no heads, 4 involve one heads, 6 involve
two heads, 4 involve three heads, and 1 involves four heads.

Therefore, Pr(X = 0) = 1/16, Pr(X = 1) = 4/16 = 1/4, Pr(X =
2) = 6/16 = 3/8, Pr(X = 3) = 4/16 = 1/4 and Pr(X = 4) = 1/16.

Therefore X̄ = 0× 1/16 + 1× 1/4 + 2× 3/8 + 3× 1/4 + 4× 1/16 = 2.

To find the variance (and standard deviation) we will find E(X2) =
02 × 1/16 + 12 × 1/4 + 22 × 3/8 + 32 × 1/4 + 42 × 1/16 = 80/16.
Therefore, V ar(X) = 80/16− 22 = 16/16 = 1 and σ =

√
1 = 1.

2 Use Simpson’s rule with n = 6 to approximate
∫ 1

0

√
1 + xdx. Use the error

bound formula to bound the error in your approximation.

Solution: If n = 6 then ∆x = 1−0
6 = 1/6 and x0 = 0, x1 = 1/6, x2 =

2/6 = 1/3, x3 = 3/6 = 1/2, x4 = 4/6 = 2/3, x5 = 5/6, x6 = 1.

We compute S(6) = 1/6
3 (
√

1+
√

1 + 1/6+
√

1 + 1/3+
√

1 + 1/2+
√

1 + 2/3+√
1 + 5/6 +

√
2).

To bound the error, we let f(x) = (1 + x)1/2, f ′(x) = 1
2 (1 + x)−1/2,

f ′′(x) = −1
4 (1 + x)−3/2, 3

8 (1 + x)−5/2, and f (4)(x) = −15
16 (1 + x)−7/2.

Over [0, 1], |f4(x)| = 15
16 (1 + x)−7/2 ≤ 15

16 . The error is bounded by
15/16×(1−0)5

180×64 .

3 You deposit $10, 000 into a bank account that is compounded continuously
at rate 0.02. After this initial deposit, you withdraw money at a constant
rate of $W per year. After 11 years, your account is empty. What was
your withdrawal rate?

Solution: We will find the amount in the account A(t) after t years. With
continuously compounded interest, A′(t) includes a term 0.02A. With a
continuous withdrawal of W , A′(t) also contains a component of −W.
Therefore A′(t) = dA

dt = 0.02A−W.

Separating variables and integrating yields:
∫

dA
0.02A−W =

∫
dt or that

50 ln |0.02A−W | = t+C. Therefore, |0.02A−W | = et/50eC/50. We remove
the absolute values and choose a new arbitrary constant B = ±eC/50 :
0.02A−W = Bet/50. Thus A = 50(W +Bet/50).

Given A(0) = 10000 we must have 10000 = 50(W +B) so B = 200−W.
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A(t) = 50(W + (200−W )et/50). If the account has zero balance at t = 11,
then W + (200−W )e11/50 = 0 so W = 200e11/50/(e11/50 − 1)$/yr.

4 Consider f(x) = A sin2 x on [0, 2π]. For what value of A is f(x) a proba-
bility density function for a random variable X on [0, 2π]? For this value
of A, what are the mean and variance of X?

Solution:

• To be a PDF, we need f(x) ≥ 0 and
∫ 2π

0
f(x)dx = 1.∫ 2π

0
A sin2 xdx = A

∫ 2π

0
1−cos(2x)

2 dx = A(x2 −
1
2 sin(2x))|2π0 = Aπ = 1 so

A = 1/π. Note this value of A ensures f(x) ≥ 0, too.

• To find the mean, we compute X̄ =
∫ 2π

0
xp(x)dx = 1

2π

∫ 2π

0
x(1−cos(2x))dx =

1
2π (

∫ 2π

0
xdx−

∫ 2π

0
x cos(2x)dx).

We apply integration by parts on the integrand x cos(2x) letting u = x
with du = dx and dv = cos(2x)dx and v = 1

2 sin(2x). Then
∫
x cos(2x)dx =

x 1
2 sin(2x)−

∫
1
2 sin(2x)dx = x

2 sin(2x) + 1
4 cos(2x) + C.

The mean is therefore 1
2π (x

2

2 −
x
2 sin(2x)− 1

4 cos(2x)|2π0 ) = π.

• To find the variance, we will compute E(X2) first.

E(X2) =
∫ 2π

0
x2p(x)dx = 1

2π (
∫ 2π

0
x2dx−

∫ 2π

0
x2 cos(2x)dx)

The integrand x2 cos(2x) also requires integration by parts steps. Setting
u = x2 and dv = cos(2x)dx so that du = 2xdx and v = 1

2 sin(2x) gives∫
x2 cos(2x)dx = x2

2 sin(2x)−
∫
x sin(2x)dx.

We integrate by parts once more on
∫
x sin(2x)dx with u = x and dv =

sin(2x)dx so that du = dx and v = −1
2 cos(2x). Thus,

∫
x sin(2x)dx =

−x
2 cos(2x) +

∫
1
2 cos(2x)dx = −x

2 cos(2x) + 1
4 sin(2x) + C.

Finally, 1
2π

∫ 2π

0
x2(1 − cos(2x))dx = 1

2π (x
3

3 −
x2

2 sin(2x) − x
2 cos(2x) +

1
4 sin(2x))|2π0 = 4π2

3 −
1
2 .

The variance is E(X2)− X̄2 = π2

3 −
1
2 .

5 In a large clinical trial, the resting heart rate of the patients was normally
distributed with a mean of 70 bpm and standard deviation of 6 bpm. What
is the median heart rate? What is the 75th percentile? What fraction of
patients had resting heart rates below 60?

Solution: We will consider the table here for illustration.

• By symmetry, the median will be the mean for a normal distribution.

• We let X be the resting heart rate. For the 75th percentile, we seek s
so that Pr(X ≤ s) = 0.75 i.e. Pr(X−706 ≤ s−70

6 ) = Pr(Z ≤ s−70
6 ) = 0.75.

From a z−score table, we see Pr(Z ≤ 0.68) ≈ 0.75 (see green circle).
Therefore s−70

6 ≈ 0.68 so the 75th percentile is approximately s = 74.08
beats per minute.

• Pr(X ≤ 60) = Pr(X−706 ≤ 60−70
6 ) ≈ Pr(Z ≤ −1.67).

Often tables such as the one included here give Pr(Z ≤ a) for a > 0, so
let’s work with that...

Pr(Z ≤ −1.67) = Pr(Z ≥ 1.67) = 1−Pr(Z ≤ 1.67) = 1− 0.9525 = 0.0475
(see red circle).
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