The University of British Columbia

Midterm 2 - March 16, 2012
Mathematics 105, 2011W T2
Section 203
Time: 50 minutes

Last Name

\qquad First
SID \qquad

Instructor name: Keqin Liu

Special Instructions:

1. A separate formula sheet will be provided. No books, notes, or calculators are allowed. Unless it is otherwise specified, answers may be left in "calculator-ready" form. Simplification of the final answer is worth at most one point.
2. Show all your work. A correct answer without accompanying work will get no credit.
3. If you need more space than the space provided, use the back of the previous page.

Rules governing examinations

- Each candidate must be prepared to produce, upon request, a UBCcard for identification.
- Candidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in examination questions.
- No candidate shall be permitted to enter the examination room after the expiration of one-half hour from the scheduled starting time, or to leave during the first half hour of the examination.
- Candidates suspected of any of the following, or similar, dishonest practices shall be immediately dismissed from the examination and shall be liable to disciplinary action.
(a) Having at the place of writing any books, papers or memoranda, calculators, computers, sound or image players/recorders/transmitters (including telephones), or other memory aid devices, other than those authorized by the examiners.
(b) Speaking or communicating with other candidates.
(c) Purposely exposing written papers to the view of other candidates or imaging devices. The plea of accident or forgetfulness shall not be received.

Q	Points	Max
1		60
2		20
3		20
4 (extra credit)		5
Total		100

- Candidates must not destroy or mutilate any examination material; must hand in all examination papers; and must not take any examination material from the examination room without permission of the invigilator.
- Candidates must follow any additional examination rules or directions communicated by the instructor or invigilator.

1. (a) Find the derivative of the function

$$
f(x)=\int_{x}^{x^{2}} \cos \left(t^{2}\right) d t
$$

at the point $x=0$.
\qquad
(b) Use Simpson's rule to approximate

$$
\int_{1}^{2} \frac{d x}{x}
$$

with $n=4$ subintervals. Find a bound on the error. No need to simplify your answers!

$$
(5+5=10 \text { points })
$$

(c) Find the definite integral

$$
\int_{0}^{\pi} \sec ^{2} x d x
$$

(d) A student randomly guesses at each answer in a true/false quiz consisting of 3 questions. Let X be the random variable representing the number of correct answers. Find the probability density function of X.

16/3/2012 Math 105 Name/SID: \qquad
(e) Find the indefinite integral

$$
\int \sin ^{3}(x) \cos ^{10}(x) d x .
$$

(f) Solve the initial value problem

$$
e^{-t} y^{\prime}=\frac{t}{y}, \quad y(0)=-5
$$

2. Evaluate the definite integral:

$$
\int_{0}^{\frac{\ln (\sqrt{3})}{2}} \frac{e^{2 t}}{\left(1+e^{4 t}\right)^{\frac{3}{2}}} d t
$$

3. The time to failure of a transistor (in years) is a continuous random variable whose cumulative distribution function is given by

$$
F(x)= \begin{cases}1-e^{-m x} & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

where m is an unknown constant.

$$
(3+7+10=20 \text { points })
$$

(a) Find the probability density function of X.
(b) If the expected time to failure of a transistor is 10 , find m.
(c) What is the probability that a transistor will last for at least 15 years?
4. (Extra credit) The monthly average price of silver has been growing at a rate proportional to the square root of the price since November 2011. The average price in November 2011 of one gram of silver was $\$ 16$ and the average price of the same in February 2012 was $\$ 25$. Write down the initial value problem of the monthly value of silver as a function of time. Do not solve this problem!
\qquad

Formula Sheet

You may refer to these formulae if necessary.

Trigonometric formulae:

$$
\begin{aligned}
\cos ^{2} x & =\frac{1+\cos (2 x)}{2} \\
\sin ^{2} x & =\frac{1-\cos (2 x)}{2}
\end{aligned}
$$

Simpson's rule:

$$
\begin{aligned}
& S_{n}=\frac{\Delta x}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\ldots+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right) . \\
& E_{s}=\frac{K(b-a)(\Delta x)^{4}}{180}, \quad\left|f^{(4)}(x)\right|<K \text { on }[a, b] .
\end{aligned}
$$

Indefinite Integrals:

$$
\int \sec x d x=\ln |\sec x+\tan x|+C
$$

Probability:

$$
\begin{array}{r}
\mathbb{E}[X]=\int_{-\infty}^{\infty} x f(x) d x \\
\operatorname{Var}[X]=\int_{-\infty}^{\infty}(x-\mathbb{E}[X])^{2} f(x) d x
\end{array}
$$

