\qquad

MATH 105: Midterm \#1 Practice Problems

1. TRUE or FALSE, plus explanation. Give a full-word answer TRUE or FALSE. If the statement is true, explain why, using concepts and results from class to justify your answer. If the statement is false, give a counterexample.
(a) [4 points] Suppose the graph of a function f has the following properties: The trace in the plane $z=c$ is empty when $c<0$, is a single point when $c=0$, and is a circle when $c>0$. Then the graph of f is a cone that opens upward.

Solution: FALSE. We could have $f(x, y)=x^{2}+y^{2}$ (a paraboloid).
(b) [4 points] If $f(x, y)$ is any function of two variables, then no two level curves of f can intersect.

Solution: TRUE. Suppose the two level curves are $f(x, y)=c_{1}$ and $f(x, y)=c_{2}$, where $c_{1} \neq c_{2}$. If (a, b) is on the first curve, then $f(a, b)=c_{1}$. But then $f(a, b) \neq c_{2}$, so (a, b) is not on the second curve. [Remember that part of the definition of a function is that $f(x, y)$ has a single value at each point in the domain.]
(c) [4 points] Suppose P_{1}, P_{2}, and P_{3} are three planes in \mathbf{R}^{3}. If P_{1} and P_{2} are both orthogonal to P_{3}, then P_{1} and P_{2} are parallel to each other.

Solution: FALSE. The planes $x+y=1$ and $x+2 y=1$ are both perpendicular to the plane $z=0$ but are not parallel to each other.
(d) [4 points] If $f(x, y)$ has continuous partial derivatives of all orders, then $f_{x x y}=f_{y x x}$ at every point in \mathbf{R}^{2}.

Solution: TRUE. Applying Clairaut's theorem twice (first to f_{x} and then to f), we see that $f_{x x y}=f_{x y x}=f_{y x x}$.
(e) [4 points] Suppose that f is defined and differentiable on all of \mathbf{R}^{2}. If there are no critical points of f, then f does not have a global maximum on \mathbf{R}^{2}.

Solution: TRUE. Every global maximum of f is a local maximum. At any local maximum, f has a critical point. So if there are no critical points, then there is no global max.
2. [5 points] Consider the function $f(x, y)=e^{y-x^{2}-1}$. Find the equation of the level curve of f that passes through the point $(2,5)$. Then sketch this curve, clearly labeling the point $(2,5)$.

Solution: We have $f(2,5)=e^{5-2^{2}-1}=e^{0}=1$. So the level curve containing $(5,2)$ is the curve $f(x, y)=1$.
Applying \ln to both sides of the equation $e^{y-x^{2}-1}=1$, we can rewrite the equation of the level curve in the form $y-x^{2}-1=0$, or $y=x^{2}+1$.
The graph looks like this:

3. Let $f(x, y)=(1-2 y)\left(x^{2}-x y\right)$.
(a) [5 points] Compute the partial derivatives f_{x} and f_{y}.

Solution: We have $f_{x}=(1-2 y)(2 x-y)$. Using the product rule, we find that

$$
\begin{aligned}
f_{y} & =(1-2 y)(-x)+\left(x^{2}-x y\right)(-2) \\
& =(1-2 y)(-x)+x(x-y)(-2) \\
& =x((2 y-1)+2(y-x)) \\
& =x(4 y-2 x-1) .
\end{aligned}
$$

(b) [5 points] Using your answer to (a), find all the critical points of f.

Solution: If $x=0$, then $f_{y}=0$ and $f_{x}=(1-2 y)(-y)$. So the critical points with $x=0$ are $(0,0)$ and $\left(0, \frac{1}{2}\right)$.
If $x \neq 0$, then $4 y-2 x-1=0$, so $2 x=4 y-1$. Substituting this back into the equation $f_{x}=0$, we find that $(1-2 y)(3 y-1)=0$, so $y=\frac{1}{2}$ or $y=\frac{1}{3}$. In these cases, $2 x=4 \cdot \frac{1}{2}-1=1$ and $2 x=4 \frac{1}{3}-1=\frac{1}{3}$ (respectively), so $x=\frac{1}{2}$ or $x=\frac{1}{6}$. So the critical points in this case are $\left(\frac{1}{2}, \frac{1}{2}\right)$ and $\left(\frac{1}{6}, \frac{1}{3}\right)$.
Combining these two cases, we find that the critical points are $(0,0),\left(0, \frac{1}{2}\right)$, $\left(\frac{1}{2}, \frac{1}{2}\right)$, and $\left(\frac{1}{6}, \frac{1}{3}\right)$.
(c) [5 points] Apply the second derivative test to label each of the points found in (b) as a local minimum, local maximum, saddle point, or inconclusive.

Solution: We have $f_{x x}=2(1-2 y)$ and $f_{y y}=4 x$. Also,

$$
\begin{aligned}
f_{x y} & =(1-2 y)(-1)+(2 x-y)(-2) \\
& =2 y-1+2 y-4 x \\
& =4 y-4 x-1 .
\end{aligned}
$$

So at $(0,0)$, we have $f_{x x}=2, f_{y y}=0$, and $f_{x y}=-1$ so

$$
D(0,0)=f_{x x}(0,0) f_{y y}(0,0)-f_{x y}(0,0)^{2}=-1
$$

so $(0,0)$ is a saddle point. At $(0,1 / 2)$, we have $f_{x x}=0, f_{y y}=0$, and $f_{x y}=1$, and

$$
D(0,1 / 2)=f_{x x}(0,1 / 2) f_{y y}(0,1 / 2)-f_{x y}(0,1 / 2)^{2}=-1
$$

So $(0,1 / 2)$ is a saddle point. At $(1 / 2,1 / 2)$, we have $f_{x x}=0, f_{y y}=2, f_{x y}=$ -1 , so

$$
D(1 / 2,1 / 2)=f_{x x}(1 / 2,1 / 2) f_{y y}(1 / 2,1 / 2)-f_{x y}(1 / 2,1 / 2)^{2}=-1
$$

so $(1 / 2,1 / 2)$ is a saddle point. At $(1 / 6,1 / 3)$, we have $f_{x x}=2 / 3, f_{y y}=2 / 3$, and $f_{x y}=-1 / 3$. So

$$
\begin{aligned}
D(1 / 6,1 / 3) & =f_{x x}(1 / 6,1 / 3) f_{y y}(1 / 6,1 / 3)-f_{x y}(1 / 6,1 / 3)^{2} \\
& =(2 / 3)(2 / 3)-(-1 / 3)^{2}=1 / 3 .
\end{aligned}
$$

Since $f_{x x}(1 / 6,1 / 3)>0$, the point $(1 / 6,1 / 3)$ is a local minimum.
4. [15 points] Find the point (x, y, z) on the plane $x-2 y+2 z=3$ that is closest to the origin. Show your work and explain your steps.

Solution: The square of the distance from (x, y, z) to the origin is $x^{2}+y^{2}+z^{2}$. Since $x-2 y+2 z=3$, we have $x=3+2 y-2 z$, and so our squared distance function is given by

$$
D=(3+2 y-2 z)^{2}+y^{2}+z^{2} .
$$

We want to find the absolute minimum of $D(x, y)$. Since the absolute minimum is also a local minimum, we can use the method of critical points: Notice that

$$
D_{y}=4(3+2 y-2 z)+2 y, \quad D_{z}=-4(3+2 y-2 z)+2 z .
$$

Setting $D_{y}=0$ and $D_{z}=0$ gives the system of equations

$$
\begin{aligned}
& 2 y=-4(3+2 y-2 z) \\
& 2 z=4(3+2 y-2 z)
\end{aligned}
$$

Comparing the two equations, we see that $y=-z$. Substituting this into the first equation gives $2(-z)=-4(3-2 z-2 z)=-4(3-4 z)=-12+16 z$. Rearranging, $18 z=12$, so $z=12 / 18=2 / 3$. Since $y=-z$, we have $y=-2 / 3$. Since $x-2 y+2 z=$ 3 , we have

$$
x=3+2 y-2 z=\frac{1}{3} .
$$

So the minimizing point is $(1 / 3,-2 / 3,2 / 3)$.
5. (a) [5 points] In your own words, explain what it means for a function $f(x, y)$ to have a saddle point at (a, b).

Solution: A saddle point (a, b) is a critical point of f with the following property: In every small disk about (a, b), there is a point (x, y) where $f(x, y)>$ $f(a, b)$ and also a point where $f(x, y)<f(a, b)$.
(b) [5 points] The function $f(x, y)=x^{5}-x^{2} y^{3}+y^{7}+11$ has a critical point at $(0,0)$. (You may assume this without checking it.) Show that $(0,0)$ is a saddle point of f.

Solution: Notice that $f(0,0)=11$. We are given that $(0,0)$ is a critical point. To show that $(0,0)$ is a saddle point, we have to show that in every disk about $(0,0)$, there are points (x, y) with $f(x, y)>11$ and $f(x, y)<11$.
To see this, notice that $f(0, y)=y^{7}+11$. So $f(0, y)>11$ if $y>0$ and $f(0, y)<11$ if $y<0$. Since we can take y as small as we want, $(0,0)$ is indeed a saddle point.
[You could also try using the second-derivative test here. However, that test would be inconclusive in this case, even though $(0,0)$ is a saddle point.]
6. [10 points] Find the absolute maximum value of the function $f(x, y)=x y^{2}$ on the region R consisting of those points (x, y) with $x^{2}+y^{2} \leq 4$ and $x \geq 0, y \geq 0$. (So R is the portion of the disk of radius 2 centered at the origin which belongs to the first quadrant, boundary points included.) Show your work and explain which methods from class you use.

Solution: We use the method from class for finding global extrema on closed bounded sets.

We first look for critical points of f inside R. We have

$$
\frac{\partial f}{\partial x}(x, y)=y^{2} \quad \text { and } \quad \frac{\partial f}{\partial y}(x, y)=2 x y
$$

The first of these equations shows that at any critical point belonging to R, we have $y=0$. But then (x, y) is on the boundary of R. So there are no critical points interior to R.

We turn next to the boundary of R. If $x=0$ or $y=0$, then $f(x, y)=0$. Otherwise, (x, y) belongs to the the circular portion of the boundary, and so $x^{2}+y^{2}=4$. In that case,

$$
f(x, y)=x y^{2}=x\left(4-x^{2}\right)=4 x-x^{3} .
$$

So we have to maximize the function $F(x)=4 x-x^{3}$ for $0 \leq x \leq 2$. We have $F^{\prime}(x)=4-3 x^{2}$, so the only critical point of F with $0 \leq x \leq 2$ is $x=\sqrt{4 / 3}$, where

$$
F(x)=x\left(4-x^{2}\right)=\sqrt{4 / 3}(4-4 / 3)=\frac{2}{\sqrt{3}} \frac{8}{3}=\frac{16}{3 \sqrt{3}} .
$$

We also have to check the endpoints of the interval $[0,2]$: We have $F(0)=0$ and $F(2)=0$.
Since the absolute maximum of F is the largest value of F seen so far, we see that this maximum value is $\frac{16}{3 \sqrt{3}}$.
7. [10 points] A firm makes x units of product A and y units of product B and has a production possibilities curve given by the equation $x^{2}+25 y^{2}=25000$ for $x \geq 0, y \geq 0$. Suppose profits are $\$ 3$ per unit for product A and $\$ 5$ per unit for product B. Find the production schedule (i.e. the values of x and y) that maximizes the total profit.

Solution: We have to maximize $f(x, y)=3 x+5 y$ subject to the constraint that $g(x, y)=0$, where $g(x, y)=x^{2}+25 y^{2}-25000$. We use Lagrange multipliers and so look for solutions to

$$
\nabla f=\lambda \nabla g
$$

Since $\nabla f=\langle 3,5\rangle$ and $\nabla g=\langle 2 x, 50 y\rangle$, this equation of vectors becomes the two simultaneous equations

$$
\begin{aligned}
& 3=\lambda(2 x) \\
& 5=\lambda(50 y) .
\end{aligned}
$$

Dividing one equation by the other, we find that

$$
\frac{5}{3}=\frac{50 y}{2 x}=\frac{25 y}{x},
$$

so that (cross-multiplying)

$$
5 x=75 y, \quad \text { or } \quad x=15 y .
$$

Since $x^{2}+25 y^{2}=25000$, this gives that $250 y^{2}=25000$, or (dividing by 250) that $y^{2}=100$, so that $y=10$ (since $y \geq 0$). Since $x=15 y$, we have $x=150$. So the optimal production schedule is $x=150$ and $y=10$.
8. In this problem, we guide you through the computation of the area underneath one hump of the curve $y=\sin x$.
(a) [5 points] Write down the right-endpoint Riemann sum for the area under the graph of $y=\sin x$ from $x=0$ to $x=\pi$, using n subintervals.

Solution: Here $[a, b]=[0, \pi]$, the length of each subinterval is $\Delta x=\frac{\pi}{n}$, and each $x_{k}=0+k \Delta=k \frac{\pi}{n}$. So the Riemann sum is

$$
\sin \left(\frac{\pi}{n}\right) \frac{\pi}{n}+\sin \left(2 \frac{\pi}{n}\right) \frac{\pi}{n}+\cdots+\sin \left(n \frac{\pi}{n}\right) \frac{\pi}{n},
$$

or, in Σ-notation,

$$
\sum_{k=1}^{n} \sin \left(k \frac{\pi}{n}\right) \frac{\pi}{n}
$$

(b) [10 points] Now assume the validity of the following formula (for each real number θ):

$$
\sum_{k=1}^{n} \sin (k \theta)=\frac{\sin (n \theta / 2)}{\sin (\theta / 2)} \sin \left(\frac{1}{2}(n+1) \theta\right)
$$

Using this formula, compute the limit as $n \rightarrow \infty$ of the expression found in part (a) and thus evaluate the area exactly. [Hint: The identity $\sin \left(\frac{\pi}{2}+\frac{\pi}{2 n}\right)=\cos \left(\frac{\pi}{2 n}\right)$ may be useful.]

Solution: Using the formula and the hint,

$$
\begin{aligned}
\sum_{k=1}^{n} \sin \left(k \frac{\pi}{n}\right) \frac{\pi}{n} & =\frac{\pi}{n} \frac{\sin (\pi / 2)}{\sin \left(\frac{\pi}{2 n}\right)} \sin \left(\frac{\pi}{2}+\frac{\pi}{2 n}\right) \\
& =2 \cos \left(\frac{\pi}{2 n}\right) \frac{\pi /(2 n)}{\sin (\pi /(2 n))}
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$ gives

$$
2\left(\lim _{n \rightarrow \infty} \cos (\pi / 2 n)\right)\left(\lim _{n \rightarrow \infty} \frac{\pi /(2 n)}{\sin (\pi / 2 n)}\right)
$$

as long as both right-hand limits exist. Since $\frac{\pi}{2 n} \rightarrow 0$ as $n \rightarrow \infty$, the first limit is $\cos (0)=1$, and the second limit is

$$
\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)}=1
$$

(You should remember this last result from differential calculus, when you discussed derivatives of trig functions.) Thus,

$$
\int_{0}^{\pi} \sin (x) d x=2 \cdot 1 \cdot 1=2 .
$$

