Name:

SID:

1. The output of a manufacturing system is given by the production function

$$
P=10 K^{\frac{1}{3}} L^{\frac{2}{3}},
$$

where K represents the amount of invested capital and L represents the amount of labor. If every unit of capital and every unit of labor costs $\$ 30$ million and $\$ 60$ million respectively, find the maximum amount of production a company can achieve if it has at most $\$ 360$ million at its disposal.
(Answer: 40 units)
2. A function F in two variables is defined as follows,

$$
F(x, y)=x^{2} y \int_{0}^{\cos y} \ln \left(3+t^{2}\right) d t
$$

Find the partial derivatives $F_{x}\left(1, \frac{\pi}{2}\right)$ and $F_{y}\left(1, \frac{\pi}{2}\right)$.
(Answer: $\left.F_{x}\left(1, \frac{\pi}{2}\right)=0, F_{y}\left(1, \frac{\pi}{2}\right)=-\frac{\pi}{2} \ln 3\right)$
3. (a) A plane passing through the point $Q(1,0,1)$ is orthogonal to the vector joining the two points $Q_{1}(1,-1,2)$ and $Q_{2}(2,1,3)$. Find the equation of the plane.
(Answer: $x+2 y+z=2$)
(b) For the plane whose equation you derived in part (a), find the point(s) on the plane closest to the point $P(2,0,4)$.
(Answer: $(4 / 3,-4 / 3,10 / 3)$)
4. Evaluate the following integrals.
(a)

$$
\int \frac{e^{2 t}}{\left(1+e^{4 t}\right)^{\frac{3}{2}}} d t
$$

(Answer: $\frac{e^{2 t}}{2 \sqrt{1+e^{4 t}}}+C$)
(b)

$$
\int_{0}^{\frac{\pi}{2}} \cos ^{4} \theta d \theta
$$

(c)

$$
\begin{aligned}
& \int \frac{3 x^{2}+5 x-2}{x^{2}-1} d x \\
& \quad(\text { Answer: } 3 x+3 \ln |x-1|+2 \ln |x+1|+C)
\end{aligned}
$$

5. Show whether the following improper integral

$$
\int_{0}^{\infty} e^{-x}(\sin x+\cos x) d x
$$

converges or diverges. If it converges, find its value.
(Answer: converges, value $=1 / 2$)
6. Solve the initial value problem

$$
\frac{d y}{d t}=\frac{t+1}{2 t y}, \quad y(1)=4
$$

(Answer: $y=\sqrt{t+\ln t+15}$)
7. Find a function f such that for every interval $[a, b]$ and for every n, the Simpson's rule approximation S_{n} gives the exact value of the integral $\int_{a}^{b} f(x) d x$.
(Answer: any polynomial of degree ≤ 3)
8. Find the limit

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{0}^{h} \arctan \left(t^{2}+1\right) d t .
$$

(Answer: $\frac{\pi}{4}$)
9. (a) A discrete random variable takes only two values a and b with equal probabilities. The expected value of the random variable is $1 / 2$ and its standard deviation is $1 / 2$. Find a and b.
(Answer: 0 and 1)
(b) None of the functions below can be pdf-s of a continuous random variable for any choice of k. Explain why.

$$
f(x)= \begin{cases}k x & \text { if }-2 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(Answer: f takes negative values)

$$
g(x)= \begin{cases}\frac{2 x}{k^{2}-x^{2}} & \text { if } 0 \leq x \leq \frac{k}{2} \\ 0 & \text { otherwise }\end{cases}
$$

(Answer: $\int_{0}^{k / 2} g(x) d x \neq 1$)
(c) A continuous random variable X has the property that

$$
P(X>\ln x)=\frac{1}{x} \quad \text { for } x>1
$$

Find the pdf of X and use this to compute the expected value of X.

$$
\text { (Answer: } f(x)=\left\{\begin{array}{ll}
e^{-x} & \text { for } x>0, \\
0 & \text { otherwise }
\end{array}, \mathbb{E}(X)=1\right. \text {) }
$$

10. (a) Manipulate the power series expansion

$$
\frac{1}{1+x}=1-x+x^{2}-x^{3}+\cdots=\sum_{k=0}^{\infty}(-1)^{k} x^{k}, \quad|x|<1
$$

to derive the following Maclaurin series of the functions $g(x)=x /\left(1+x^{2}\right)$ and $h(x)=\ln \left(1+x^{2}\right)$:

$$
\begin{aligned}
& g(x)=\sum_{k=0}^{\infty}(-1)^{k} x^{2 k+1} \\
& h(x)=\sum_{k=1}^{\infty}(-1)^{k-1} \frac{x^{2 k}}{k} .
\end{aligned}
$$

(b) Use the results in part (a) to evaluate the series

$$
\sum_{k=1}^{\infty}(-1)^{k} \frac{25^{k}}{k}
$$

(Answer: $\ln (1 / 26)$)
11. Determine, with justification, whether each of the following series converges or diverges.
(a) $\sum_{k=1}^{\infty} k \sin \left(\frac{1}{k}\right)$,
(b) $\sum_{k=1}^{\infty} k^{2} e^{-k}$,
(c) $\sum_{k=1}^{\infty} \frac{k \sin (k)}{k^{3}+1}$,
(d) $\sum_{k=1}^{\infty} \ln \left(\frac{k+1}{k}\right)$.
(Answer: (a) diverges, (b) converges, (c) converges, (d) diverges)
12. Determine, with justification, whether each of the following sequences converges or diverges. If the sequence converges, find the limit.
(a) $a_{k}=\left(1+2(-1)^{k}\right) \frac{k}{k^{2}+1}$,
(b) $a_{k}=\sin \left(\frac{k \pi}{2}\right) \frac{k^{2}}{k^{2}+1}$,
(c) $a_{k}=\frac{\sqrt{3 k+1}-\sqrt{3 k}}{\sqrt{4 k+2}-2 \sqrt{k}}$.
(Answer: (a) converges to 0 , (b) diverges, (c) converges to $\frac{1}{\sqrt{3}}$)

