## Math 105 Assignment 4 Solutions

1. (10 points) Evaluate

$$
\int \frac{x^{18}}{\left(49-x^{2}\right)^{\frac{21}{2}}} d x
$$

Solution: The denominator suggests a trigonometric substitution involving the sin function. Perform the substitution $x=7 \sin (\theta), d x=7 \cos (\theta)$ to get

$$
\begin{gathered}
\int \frac{x^{18}}{\left(49-x^{2}\right)^{\frac{21}{2}}} d x=\int \frac{(7 \sin (\theta))^{18}}{\left(49-(7 \sin (\theta))^{2}\right)^{\frac{21}{2}}} \cdot 7 \cos (\theta) d \theta=\int \frac{(7 \sin (\theta))^{18}}{\left(49 \cos ^{2}(\theta)\right)^{\frac{21}{2}}} \cdot 7 \cos (\theta) d \theta \\
\\
=\int \frac{(7 \sin (\theta))^{18}}{(7 \cos (\theta))^{21}} \cdot 7 \cos (\theta) d \theta=\int \tan ^{18}(\theta) \cdot \frac{1}{49} \sec ^{2}(\theta) d \theta
\end{gathered}
$$

We can take care of this last expression using the substitution $u=\tan (\theta), d u=\sec ^{2}(\theta) d x$ to get

$$
\frac{1}{49} \int \tan ^{18}(\theta) \sec ^{2}(\theta) d u=\frac{1}{49} \int u^{18} d u=\frac{1}{49} \cdot \frac{u^{19}}{19}+C=\frac{1}{49} \cdot \frac{\tan ^{19}(\theta)}{19}+C
$$

To substitute our original variable $x=7 \sin (\theta)$ back in, we need to change this to an expression in terms of sin. Rewriting,
$\frac{1}{49} \cdot \frac{\tan ^{19}(\theta)}{19}+C=\frac{1}{931} \cdot \frac{7 \sin ^{19}(\theta)}{7 \cos ^{19}(\theta)}+C=\frac{1}{931} \cdot \frac{\sin ^{19}(\theta)}{\left(\sqrt{49-49 \sin ^{2}(\theta)}\right)^{\frac{19}{2}}}+C=\frac{1}{931} \cdot \frac{x^{19}}{\left(49-x^{2}\right)^{\frac{19}{2}}}+C$
Our end result is then

$$
\int \frac{x^{18}}{\left(49-x^{2}\right)^{\frac{21}{2}}} d x=\frac{1}{931} \cdot \frac{x^{19}}{\left(49-x^{2}\right)^{\frac{19}{2}}}+C
$$

2. (15 points) Evaluate

$$
\int \frac{x^{3}-4}{x^{2}-2 x-3} d x
$$

Solution: We use partial fractions to simplify the integrand.
Since the degree of the numerator $x^{3}-4$ is not strictly less than the degree of the denominator $x^{2}-2 x-3$, we need to do long division first.

Divide the leading term of the numerator, $x^{3}$, by the leading term of the denominator, $x^{2}$. The result of this is $x$, so we subtract $x\left(x^{2}-2 x-3\right)$ from the numerator.
$\left(x^{3}-4\right)-x\left(x^{2}-2 x-3\right)=2 x^{2}+3 x-4$
Repeating this with $2 x^{2}+3 x-4$, the result of dividing the leading term $2 x^{2}$ by $x^{2}$ is 2 , so we subtract $2\left(x^{2}-2 x-3\right)$.
$\left(2 x^{2}+3 x-4\right)-2\left(x^{2}-2 x-3\right)=7 x+2$, so $x^{4}-4=(x+2)\left(x^{2}-2 x-3\right)+(7 x+2)$.
This means our integral is

$$
\int \frac{x^{3}-4}{x^{2}-2 x-3} d x=\int\left((x+2)+\frac{7 x+2}{x^{2}-2 x-3}\right) d x
$$

We use partial fractions to take care of $\int \frac{7 x+2}{x^{2}-2 x-3} d x$. First note that the denominator factors as $x^{2}-2 x-3=(x-3)(x+1)$

To do this, we want numbers $A, B$ with $\frac{7 x+2}{x^{2}-2 x-3}=\frac{A}{x-3}+\frac{B}{x+1}$.
Clearing denominators gives $7 x+2=(x-3)(x+1) \frac{A}{x-3}+(x-3)(x+1) \frac{B}{x+1}=(x-3) A+(x+1) B=$ $(A+B) x+(A-3 B)$

The coefficient of $x$ on the left is 7 and the coefficient of $x$ on the right is $A+B$, so we get the equation $7=A+B$.

The constant term on the left is 2 , and the constant term on the right is $3 A-2 B$, so we get the equation $2=A-3 B$.

Adding three times the first equation to the second gives $23=3 \cdot 7+2=3 A+A+3 B-3 B=4 A$, so $A=\frac{23}{4}$, and plugging back into the original equation, we get $B=\frac{5}{4}$.

Now we have

$$
\int \frac{7 x+1}{x^{2}-2 x-3} d x=\int\left(\frac{\frac{23}{4}}{x-3}+\frac{\frac{5}{4}}{x-1}\right) d x=\frac{23}{4} \ln (x-3)+\frac{5}{4} \ln (x-1)+C
$$

For our original integral, we now have

$$
\int \frac{x^{3}-4}{x^{2}-2 x-3} d x=\int(x+2) d x+\int \frac{7 x+2}{x^{2}-2 x-3} d x=\frac{1}{2} x^{2}+2 x+\frac{23}{4} \ln (x-3)+\frac{5}{4} \ln (x-1)+C
$$

3. (15 points) Consider the integral

$$
\mathrm{I}=\int_{0}^{1} \sqrt{1-x^{2}} d x
$$

(a) Find $I$ (use geometry). (b) Find an approximation of $I$ using Midpoint rule and Trapezoid rule with $n=4$. (c) For both Midpoint and Trapezoid rules, calculate the absolute error between the estimate and the true value.

Solution: (a) From 0 to 1 , the function traces a quarter circle of radius 1. The area underneath is therefore a quarter of the area of a circle with radius one, so $I=\frac{\pi}{4}$.
(b) First we need to partition the interval into $n=4$ parts. The partition has grid points $x_{0}=0, x_{1}=\frac{1}{4}, x_{2}=\frac{1}{2}, x_{3}=\frac{3}{4}, x_{4}=1$. The width of the intervals is $\Delta x=\frac{1}{4}$.

Midpoint Rule: The midpoints of the intervals $\left[x_{k-1}, x_{k}\right]$ for $k=1,2,3,4$ are $m_{1}=\frac{1}{8}, m_{2}=\frac{3}{8}, m_{3}=$ $\frac{5}{8}, m_{4}=\frac{7}{8}$.

Evaluating the function $f(x)=\sqrt{1-x^{2}}$ at these points, we have $f\left(m_{1}\right)=\frac{\sqrt{63}}{8}, f\left(m_{2}\right)=\frac{\sqrt{55}}{8}, f\left(m_{3}\right)=$ $\frac{\sqrt{39}}{8}, f\left(m_{4}\right)=\frac{\sqrt{15}}{8}$.

The midpoint rule approximation is

$$
M(n)=\sum_{k=1}^{n} f\left(\frac{x_{k-1}+x_{k}}{2}\right) \Delta x=\sum_{k=1}^{n} f\left(m_{k}\right) \Delta x=\frac{1}{4}\left(\frac{\sqrt{63}}{8}+\frac{\sqrt{55}}{8}+\frac{\sqrt{39}}{8}+\frac{\sqrt{15}}{8}\right) \approx 0.795982
$$

The absolute error is $\left|\frac{\pi}{4}-M(n)\right| \approx 0.010583$, and the relative error is $\frac{\left|\frac{\pi}{4}-M(n)\right|}{\frac{\pi}{4}} \approx 0.013475$.

Trapezoid Rule: Evaluating the function $f$ at the grid points, $f\left(x_{0}\right)=f(0)=1, f\left(x_{1}\right)=f\left(\frac{1}{4}\right)=$ $\frac{\sqrt{15}}{4}, f\left(x_{2}\right)=f\left(\frac{1}{2}\right)=\frac{\sqrt{3}}{2}, f\left(x_{3}\right)=f\left(\frac{3}{4}\right)=\frac{\sqrt{7}}{4}, f\left(x_{4}\right)=f(1)=0$.

The trapezoid rule approximation is

$$
T(n)=\frac{f\left(x_{0}\right)}{2}+\sum_{k=1}^{n-1} f\left(x_{k}\right)+\frac{f\left(x_{n}\right)}{2}=\frac{1}{2}+\frac{\sqrt{15}}{4}+\frac{\sqrt{3}}{2}+\frac{\sqrt{7}}{4}+\frac{0}{2} \approx 0.748927
$$

The absolute error is $\left|\frac{\pi}{4}-T(n)\right| \approx 0.036471$, and the relative error is $\frac{\left|\frac{\pi}{4}-T(n)\right|}{\frac{\pi}{4}} \approx 0.046437$.

