Math 105 Assignment 2 Solutions

Consider the function $f:[0,2] \rightarrow \mathbf{R}$ defined by

$$
f(x)=\left\{\begin{array}{cc}
\sqrt{1-(x-1)^{2}}, & 0 \leq x \leq 1 \\
x, & 1<x \leq 2
\end{array}\right.
$$

(a) Sketch the graph of the function $f(2 \mathrm{pts})$.
(b) Find an antiderivative of $\sqrt{1-(x-1)^{2}}$ (2 pts). Hint: use the formula

$$
\int \sqrt{1-x^{2}} d x=\frac{x \sqrt{1-x^{2}}}{2}+\frac{\sin ^{-1} x}{2}+C
$$

Solution: We want to do a substitution to get this in the form of the hint. Let $u=x-1$, so $d u=d x$, and appyling the substitution rule,

$$
\int \sqrt{1-(x-1)^{2}} d x=\int \sqrt{1-u^{2}} d u=\frac{u \sqrt{1-u^{2}}}{2}+\frac{\sin ^{-1} u}{2}+C
$$

Substituting in $u=x-1$, we have

$$
\int \sqrt{1-(x-1)^{2}} d x=\frac{(x-1) \sqrt{1-(x-1)^{2}}}{2}+\frac{\sin ^{-1}(x-1)}{2}+C
$$

(c) Calculate the left Riemann sum for a regular partition and $n=4$. Does the result underestimate or overestimate $\int_{0}^{2} f(x) d x(2+1=3 \mathrm{pts})$?

Solution: The first thing to do is write down the regular partition for the interval $[0,1]$ and $n=4$.
The points creating the partition are $x_{0}=0, x_{1}=\frac{1}{2}, x_{2}=1, x_{3}=\frac{3}{2}, x_{4}=2$ and the intervals of the partition are $\left[0, \frac{1}{2}\right),\left[\frac{1}{2}, 1\right),\left[1, \frac{3}{2}\right),\left[\frac{3}{2}, 2\right]$.
A Riemann sum for the partition is $\sum_{i=1}^{4} f\left(y_{i}\right)\left(x_{i}-x_{i-1}\right)$, where y_{i} is a point in the closed interval $\left[x_{i-1}, x_{i}\right]$. The left Riemann sum is the Riemann sum where the function is evaluated at the left endpoints, so $y_{i}=x_{i-1}$ for each i.

Evaluating at these left endpoints, we have $f(0)=\sqrt{1-(0-1)^{2}}=0, f\left(\frac{1}{2}\right)=\sqrt{1-\left(\frac{1}{2}-1\right)^{2}}=$ $\frac{\sqrt{3}}{2}, f(1)=\sqrt{1-(1-1)^{2}}=1, f\left(\frac{3}{2}\right)=\frac{3}{2}$.

Our left Riemann sum is now

$$
\sum_{i=1}^{4} f\left(x_{i-1}\right)\left(x_{i}-x_{i-1}\right)=0 \cdot\left(\frac{1}{2}-0\right)+\frac{\sqrt{3}}{2} \cdot\left(1-\frac{1}{2}\right)+1 \cdot\left(\frac{3}{2}-1\right)+\frac{3}{2} \cdot\left(2-\frac{3}{2}\right)=\frac{\sqrt{3}+5}{4}
$$

Looking at the graph we sketched, the function is strictly increasing, so we know that the left Riemann sum will underestimate the integral $\int_{0}^{2} f(x) d x$.
(d) Calculate the right Riemann sum for a regular partition and $n=4$. Does the result underestimate or overestimate $\int_{0}^{2} f(x) d x(2+1=3 \mathrm{pts})$?
Solution: The partition in this question is the same as in part (c). The right Riemann sum is the Riemann sum where the function is evaluated at the right endpoints, so $y_{i}=x_{i}$ for all i.

Evaluating at the right endpoints, we have $f\left(\frac{1}{2}\right)=\sqrt{1-\left(\frac{1}{2}-1\right)^{2}}=\frac{\sqrt{3}}{2}, f(1)=\sqrt{1-(1-1)^{2}}=$ $1, f\left(\frac{3}{2}\right)=\frac{3}{2}, f(2)=2$.

Our right Riemann sum is now

$$
\sum_{i=1}^{4} f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)=\frac{\sqrt{3}}{2} \cdot\left(\frac{1}{2}-0\right)+1 \cdot\left(1-\frac{1}{2}\right)+\frac{3}{2} \cdot\left(\frac{3}{2}-1\right)+2 \cdot\left(2-\frac{3}{2}\right)=\frac{\sqrt{3}+9}{4}
$$

The function is strictly increasing, so we know that the right Riemann sum will overestimate the integral $\int_{0}^{2} f(x) d x$.
(e) Evaluate $\int_{0}^{2} f(x) d x$ using a geometric argument. Hint: the area of a circle with radius r is $\pi r^{2}(2 \mathrm{pts})$.

Solution: From 0 to 1 , the function traces a quarter circle of radius 1 , so the area under this portion of the function is a quarter of the area of a circle, $\frac{\pi \cdot 1^{2}}{4}=\frac{\pi}{4}$.
From 1 to 2 , the function traces the line $y=x$. We can split up the area underneath into two parts to make it easy to find the area, namely square with corners $(1,1),(1,0),(2,0),(2,1)$, which has area 1 , and the triangle on top of it with corners $(1,1),(2,2),(2,1)$, which is half of a 1×1 square, so it has area $\frac{1}{2}$. The area under this section is then $\frac{3}{2}$.
(Alternatively, the area under the function from 1 to 2 forms a trapezoid with parallel sides of lengths $a=1$ and $b=2$, and height $h=1$, so using the area formula $A=\frac{a+b}{2} \cdot h$ gives the same result.)

Our total area is then $\frac{\pi+6}{4}$.
(f) Evaluate $\int_{0}^{2} f(x) d x$ using the fundamental theorem of calculus. Hint: split the integral into two integrals (3 pts).

Solution: The idea here is to split up the integral into intervals where we know an antiderivative. From part (b), we know an antiderivative on the interval $[0,1]$, and on the interval $[1,2]$, the function is just the line $f(x)=x$, so we know the antiderivative there too.

Working out the first piece,

$$
\begin{gathered}
\quad \int_{0}^{1} f(x) d x=\int_{0}^{1} \sqrt{1-(x-1)^{2}} d x=\left[\frac{(x-1) \sqrt{1-(x-1)^{2}}}{2}+\frac{\sin ^{-1}(x-1)}{2}\right]_{0}^{1} \\
= \\
{\left[\frac{(1-1) \sqrt{1-(1-1)^{2}}}{2}+\frac{\sin ^{-1}(1-1)}{2}\right]-\left[\frac{(0-1) \sqrt{1-(0-1)^{2}}}{2}+\frac{\sin ^{-1}(0-1)}{2}\right]=\frac{\pi}{4}}
\end{gathered}
$$

And for the other part, we have

$$
\int_{1}^{2} f(x) d x=\int_{1}^{2} x d x=\left[\frac{x^{2}}{2}\right]_{1}^{2}=2-\frac{1}{2}=\frac{3}{2}
$$

Adding these together, we get $\int_{0}^{2} f(x) d x=\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x=\frac{\pi+6}{4}$.

