Math 105 Assignment 10 Solutions

1. A star player in the NBA is offered a 6-year contract by a team and two choices for compensation. In the first, he is offered a lump sum of \$40,000,000, paid at the beginning of his contract. In the second, he is offered an initial payment of \$6,000,000 and a 6-year continuous income stream at the rate of \$7,500,000 per year deposited into a savings account paying 8% annual interest, compounded continuously. Assuming that the player can also invest his money with the same interest of 8%, determine which plan is better for the player, and by how much.

Solution: We calculate the present value of each option. Option one has a present value of 40,000,000, and option two has a present value of 6,000,000+PV, where PV is the present value of being paid 7,500,000 per year deposited into a savings account paying 8% continuously compounded annual interest. We now calculate this present value.

From the formula for present value of a continuous income stream, we have $PV = \int_0^7 7,500,000e^{-0.08t}dt \approx 35,739,057$. Thus the second option pays \$41,739,057 in present value, so it is the better option.

2. A random variable has only three possible values: 1, 2 and 4. The expected value (mean) is 3 and the variance is $\frac{3}{2}$. Find the probability distribution of X.

Solution: We let p_1 be the probability of 1, p_2 the probability of 2, and p_3 the probability of 4.

The expected value of the probability distribution is $1p_1 + 2p_2 + 4p_3 = 3$ and the variance is $(1-3)^2p_1 + (2-3)^2p_2 + (4-3)^2p_3 = 4p_1 + p_2 + p_3 = \frac{3}{2}$. Together with the fact that $p_1 + p_2 + p_3 = 1$ (probability distribution), this gives us a system of three equations we can solve to find the probabilities p_1, p_2, p_3 .

Subtract twice the second equation from the first to get $-7p_1 + 2p_3 = 0$, which gives $p_3 = \frac{7}{2}p_1$. Substituting this into the first equation, we have $15p_1 + 2p_2 = 3$, from which we get $p_2 = \frac{3-15p_1}{2}$.

Plugging this information into $p_1 + p_2 + p_3 = 1$, we get $p_1 + \frac{3-15p_1}{2} + 7/2p_1 = -3p_1 + \frac{3}{2} = 1$, which gives $p_1 = \frac{1}{6}$, so $p_2 = \frac{1}{4}$ and $p_3 = \frac{7}{12}$.

3. Assume that the daily demand for a certain product in thousands of units has probability density function

$$f(x) = \frac{1}{18}(9 - x^2), \qquad 0 \le x \le 3.$$

- (a) Find the probability that the demand is at least 1000 units.
- (b) Find the probability that the demand is at most 2000 units.
- (c) Find the probability that the demand is between 1000 and 2000 units.

Solution:

(a) This is the integral
$$\int_{1}^{3} f(x)dx = \left[\frac{1}{18}(9x - \frac{x^{3}}{3})\right]_{1}^{3} = \frac{14}{27}$$

(b) This is the integral $\int_{0}^{2} f(x)dx = \frac{23}{27}$
(c) This is the integral $\int_{1}^{2} f(x)dx = \frac{10}{27}$