Math 105:103 Assignment 1 Solutions

1. (i) Find a function whose derivative is $\frac{1}{x^{2}}-\frac{2}{x^{5 / 2}}$.

Solution: Using the power rule for integrals, a function with derivative $\frac{1}{x^{2}}$ is $\frac{-1}{x}$.
Using the power rule for integrals, a function with derivative $\frac{2}{x^{5 / 2}}$ is $\frac{-4}{3 x^{3 / 2}}$.
Remembering that the derivative of a sum is the sum of derivatives, we can put this together to get that $\frac{-1}{x}+\frac{4}{3 x^{3 / 2}}$ is a function whose derivative is $\frac{1}{x^{2}}-\frac{2}{x^{5 / 2}}$.
(ii) Find a function whose derivative is $2 e^{2 t}+5 \sec (3 t) \tan (3 t)$.

Solution: Applying the chain rule, the derivative of $e^{2 t}$ is $2 e^{2 t}$, so this will take care of the first summand.

Recall that the derivative of $\sec (t)$ is $\sec (t) \tan (t)$. Applying the chain rule, the derivative of $\sec (3 t)$ is $3 \sec (3 t) \tan (3 t)$, so a function with derivative $5 \sec (3 t) \tan (t)$ is $\frac{5}{3} \sec (3 t)$.

Now putting this together, we get that the function $e^{2 t}+\frac{5}{3} \sec (3 t)$ is a function with derivative $2 e^{2 t}+5 \sec (3 t) \tan (3 t)$.
(iii) Use parts (a) and (b) to evaluate the indefinite integral

$$
\int\left[\frac{1}{s^{2}}-\frac{2}{s^{5 / 2}}-2 e^{2 s}-5 \sec (3 s) \tan (3 s)\right] \mathrm{d} s
$$

Solution: Notice that the integrand is just the function from the first problem statement minus the function from the second problem statement. From this (using the property of a derivative of sums), we know a function with derivative $\frac{1}{s^{2}}-\frac{2}{s^{5 / 2}}-2 e^{2 s}-$ $5 \sec (3 s) \tan (3 s)$, namely $\frac{-1}{s}+\frac{4}{3 s^{3 / 2}}-e^{2 s}-\frac{5}{3} \sec (3 s)$.

This means that the indefinite integral is $\frac{-1}{s}+\frac{4}{3 s^{3 / 2}}-e^{2 s}-\frac{5}{3} \sec (3 s)+C$.
2. Explain in a few words which change of variable would be appropriate for the following integral, and then use it to evaluate the integral:

$$
\int\left(x^{2}-x\right)\left(2 x^{3}-3 x^{2}+14\right)^{11} \mathrm{~d} x
$$

Solution: The tricky part of the integrand is $\left(2 x^{3}-3 x^{2}+14\right)^{11}$, so we want a substitution that will make this easier. The derivative of $\left(2 x^{3}-3 x^{2}+14\right)$ is $6 x^{2}-6 x$, which luckily enough is 6 times the other factor in the integrand.

Now make the substitution $u=2 x^{3}-3 x^{2}+14$, which makes $\mathrm{d} u=\left(6 x^{2}-6 x\right) \mathrm{d} x=6\left(x^{2}-x\right) \mathrm{d} x$. In order to substitute, need to rewrite this as $\frac{\mathrm{d} u}{6}=\left(x^{2}-x\right) \mathrm{d} x$, so now we get:

$$
\int\left(x^{2}-x\right)\left(2 x^{3}-3 x^{2}+14\right)^{11} \mathrm{~d} x=\int(\underbrace{2 x^{3}-3 x^{2}+14}_{u})^{11} \underbrace{\left(x^{2}-x\right) \mathrm{d} x}_{\frac{1}{6} \cdot \mathrm{~d} u}=\frac{1}{6} \int u^{11} \mathrm{du}
$$

This integral is now easy to evaluate as

$$
\frac{1}{6} \int u^{11} \mathrm{du}=\frac{1}{6 \cdot 12} u^{12}+C=\frac{1}{72} u^{12}+C
$$

Substituting $u=2 x^{3}-3 x^{2}+14$ back into this, we have

$$
\int\left(x^{2}-x\right)\left(2 x^{3}-3 x^{2}+14\right)^{11} \mathrm{~d} x=\frac{1}{72}\left(2 x^{3}-3 x^{2}+14\right)^{12}+C
$$

3. Find a function g such that

$$
g^{\prime}(x)=\frac{\sin \left(\ln \left(x^{3}\right)\right)}{4 x}
$$

How many such functions are there?

Solution: If we can find the antiderivative $\int \frac{\sin \left(\ln \left(x^{3}\right)\right)}{4 x} \mathrm{~d} x$, then we'll have such a function.

We want to do a substitution to simplify this integral. We know that the derivative of $\ln (x)$ is $1 / x$, so applying the chain rule, the derivative of $\ln \left(x^{3}\right)$ is $\frac{1}{x^{3}} \cdot 3 x^{2}=\frac{3}{x}$ (we also could have done this by using the fact that $\left.\ln \left(x^{3}\right)=3 \ln (x)\right)$. This will give us a substitution that clears out the denominator:

Let $u=\ln \left(x^{3}\right)$. Then $\mathrm{d} u=\frac{3}{x} \mathrm{~d} x$. To do the substitution, we need to rewrite this as $\frac{1}{3} \mathrm{~d} u=\frac{1}{x} \mathrm{~d} x$.

Now we have

$$
\int \frac{\sin \left(\ln \left(x^{3}\right)\right)}{4 x} \mathrm{~d} x=\frac{1}{4} \cdot \frac{1}{3} \int \sin (u) \mathrm{d} u
$$

Evaluating gives $\frac{-\cos (u)}{12}+C$, and substituting back in $u=\ln \left(x^{3}\right)$ gives

$$
\int \frac{\sin \left(\ln \left(x^{3}\right)\right)}{4 x}=\frac{-\cos \left(\ln \left(x^{3}\right)\right)}{12}+C
$$

Now if we take $g(x)=\frac{-\cos \left(\ln \left(x^{3}\right)\right)}{12}$, we have $g^{\prime}(x)=\frac{\sin \left(\ln \left(x^{3}\right)\right)}{4 x}$.
There are infinitely many such functions, since if C is any real number, then $g(x)+C$ also has this property.

Remark: We could have done this problem by doing two changes of variables:
First make the substitution $u=x^{3}$ to get $\mathrm{d} u=3 x^{2} \mathrm{~d} x$, so $\frac{1}{12} \cdot \frac{1}{u} \mathrm{~d} u=\frac{1}{12} \cdot \frac{1}{x^{3}} \mathrm{~d} u=\frac{1}{4 x} \mathrm{~d} x$.

We now get

$$
\int \frac{\sin \left(\ln \left(x^{3}\right)\right)}{4 x} \mathrm{~d} x=\frac{1}{12} \int \frac{\sin (\ln (u))}{u} \mathrm{~d} u
$$

To evaluate the integral on the right, we do another substitution. Let $v=\ln (u)$, so $\mathrm{d} v=\frac{1}{u} \mathrm{~d} u$, and we get

$$
\int \frac{\sin \left(\ln \left(x^{3}\right)\right)}{4 x} \mathrm{~d} x=\frac{1}{12} \int \frac{\sin (\ln (u))}{u} \mathrm{~d} u=\frac{1}{12} \int \sin (v) \mathrm{d} v
$$

which evaluates to $-\cos (u)+C$, and substituting $v=\ln (u)=\ln \left(x^{3}\right)$ gives the final result

$$
\int \frac{\sin \left(\ln \left(x^{3}\right)\right)}{4 x}=\frac{-\cos \left(\ln \left(x^{3}\right)\right)}{12}+C
$$

Remembering the chain rule, this way is completely equivalent to the first method. As we can see from the first solution, making the substitution $u=\ln \left(x^{3}\right)$ right away is more direct and faster.

