Math 105 Practice Exam 3

1. (a) Evaluate $\lim _{(x, y) \rightarrow(1,-1)} \frac{\sin \left(x^{2}+y\right)}{x^{2}+y}$ or show that it doesn't exist.
(b) Consider the area function $A(x)=\int_{1}^{x} f(t) d t$, with $A(2)=6$ and $A(3)=5$. Compute $\int_{3}^{2} f(t) d t$.
(c) A self-employed software engineer estimates that her annual income over the next 10 years will steadily increase according to the formula $70,000 e^{0.1 t}$, where t is the time in years. She decides to save 10% of her income in an account paying 6% annual interest, compounded continuously. Treating the savings as a continuous income stream over a 10-year period, find the present value.
(d) Draw the level curves of the graph of $f(x, y)=2 x^{2}+y^{2}$ at the heights $0,1,2$.
(e) Evaluate $\int_{0}^{1} \frac{\cos (\sqrt{x})}{\sqrt{x}} d x$.
(f) Let $f(x, y)=\frac{x+y}{x-y}$. Use linear approximation to estimate $f(2.95,2.05)$.
2. Evaluate $\int \frac{x+2}{x\left(x^{2}-1\right)} d x$.
3. Find the area of the region in the first quadrant bounded by $y=\frac{1}{x}, y=4 x$, and $y=\frac{1}{2} x$.
4. Find k such that $f(x)=\frac{k}{(x+1)^{3}}$ is a probability density function on the interval $[0, \infty)$, for some random variable X. Then compute the probability that $1 \leq X \leq 4$.
5. Mothballs tend to evaporate at a rate proportional to their surface area. If V is the volume of a mothball, then its surface area is roughly $V^{2 / 3}$. Suppose that the mothball's volume $V(t)$ (as a function of times t in weeks) decreases at a rate that is twice its surface area, and that it initially has a volume of 27 cubic centimeters.
Construct and solve an initial value problem for the volume $V(t)$. Then determine if and when the mothball vanishes.
6. Consider the surface $z=f(x, y)=1+\frac{1}{\sqrt{x y}}$. At the point on the surface above the point $(x, y)=(4,1)$, what is the direction of steepest descent? Describe this direction with a unit vector in the $x y$-plane.
7. By employing x semi-skilled workers and y skilled workers, a factory can assemble $\sqrt{4 x y+y^{2}}$ custom-built computers per hour. The factory pays each semi-skilled worker $\$ 8$ per hour, and each skilled worker $\$ 20$ per hour. Determine the maximum number of computers the factory can assemble in an hour for a total labour cost of $\$ 720$.
8. Find and classify the critical points of $f(x, y)=7 x^{2}-5 x y+y^{2}+x-y+6$.
9. Given the supply and demand curves

$$
p=D(q)=8-q, \quad p=S(q)=\sqrt{q+1}+3,
$$

find the equilibrium point and the consumer/producer surplus.

