Math 105 Practice Exam 3 Solutions

1. (a) Evaluate $\lim _{(x, y) \rightarrow(1,-1)} \frac{\sin \left(x^{2}+y\right)}{x^{2}+y}$ or show that it doesn't exist.

We can use the substitution $u=x^{2}+y$, so $u \rightarrow 1^{2}-1=0$:
$\lim _{(x, y) \rightarrow(1,-1)} \frac{\sin \left(x^{2}+y\right)}{x^{2}+y}=\lim _{u \rightarrow 0} \frac{\sin (u)}{u}=\lim _{u \rightarrow 0} \frac{\sin (u)-\sin (0)}{u-0}=\left.\frac{d}{d t} \sin (t)\right|_{t=0}=\cos (0)=1$.
Here we used the definition of derivative, $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$, in reverse.
(b) Consider the area function $A(x)=\int_{1}^{x} f(t) d t$, with $A(2)=6$ and $A(3)=5$.

Compute $\int_{3}^{2} f(t) d t$.
By the Fundamental Theorem of Calculus, $\int_{3}^{2} f(t) d t=A(2)-A(3)=6-5=1$.
(c) A self-employed software engineer estimates that her annual income over the next 10 years will steadily increase according to the formula $70,000 e^{0.1 t}$, where t is the time in years. She decides to save 10% of her income in an account paying 6% annual interest, compounded continuously. Treating the savings as a continuous income stream over a 10-year period, find the present value.

$$
P V=\int_{0}^{10} 7000 e^{0.1 t} e^{-0.06 t} d t=7000 \int_{0}^{10} e^{0.04 t} d t=\left.7000 \cdot \frac{1}{0.04} e^{0.04 t}\right|_{0} ^{10}=175000\left(e^{0.4}-1\right)(\approx 86,000)
$$

(d) Draw the level curves of the graph of $f(x, y)=2 x^{2}+y^{2}$ at the heights $0,1,2$.

For 1 and 2 it's an ellipse, for 0 it's just the point $(0,0)$.
(e) Evaluate $\int_{0}^{1} \frac{\cos (\sqrt{x})}{\sqrt{x}} d x$.

$$
\begin{gathered}
\int \frac{\cos (\sqrt{x})}{\sqrt{x}} d x \stackrel{u=\sqrt{x}}{=} 2 \int \cos (u) d u=2 \sin (u)+C=2 \sin (\sqrt{x})+C, \\
\int_{0}^{1} \frac{\cos (\sqrt{x})}{\sqrt{x}} d x=\left.2 \lim _{c \rightarrow 0^{+}} \sin (\sqrt{x})\right|_{c} ^{1}=2 \lim _{c \rightarrow 0^{+}}(\sin (1)-\sin (c))=2(\sin (1)-\sin (0))=2 \sin (1)
\end{gathered}
$$

(f) Let $f(x, y)=\frac{x+y}{x-y}$. Use linear approximation to estimate $f(2.95,2.05)$.

$$
\begin{gathered}
f_{x}=\frac{-2 y}{(x-y)^{2}}, \quad f_{y}=\frac{2 x}{(x-y)^{2}} \\
d z=f_{x}(3,2) d x+f_{y}(3,2) d y=(-4) \cdot(-0.05)+6 \cdot 0.05=0.5 \\
\Rightarrow \quad f(2.95,2.05) \approx f(3,2)+d z=5+0.5=5.5
\end{gathered}
$$

2. Evaluate $\int \frac{x+2}{x\left(x^{2}-1\right)} d x$.

$$
=-2 \int \frac{1}{x} d x+\frac{3}{2} \int \frac{1}{x-1} d x+\frac{1}{2} \int \frac{1}{x+1} d x=-2 \ln |x|+\frac{3}{2} \ln |x-1|+\frac{1}{2} \ln |x+1|+C
$$

3. Find the area of the region in the first quadrant bounded by $y=\frac{1}{x}, y=4 x$, and $y=\frac{1}{2} x$.

$$
\begin{gathered}
=\int_{0}^{1 / 2}\left(4 x-\frac{1}{2} x\right) d x+\int_{1 / 2}^{\sqrt{2}}\left(x^{-1}-\frac{1}{2} x\right) d x=\left.\frac{7}{4} x^{2}\right|_{0} ^{1 / 2}+\left.\left(\ln |x|-\frac{1}{4} x^{2}\right)\right|_{1 / 2} ^{\sqrt{2}} \\
=\frac{7}{16}+\ln (\sqrt{2})-\frac{1}{2}-\ln (1 / 2)+\frac{1}{16}=\frac{3}{2} \ln (2)
\end{gathered}
$$

4. Find k such that $f(x)=\frac{k}{(x+1)^{3}}$ is a probability density function on the interval $[0, \infty)$. Then compute the probability that $1 \leq x \leq 4$.

$$
\begin{gathered}
1=\int_{0}^{\infty} \frac{k}{(x+1)^{3}} d x=k \lim _{c \rightarrow \infty}-\left.\frac{1}{2}(x+1)^{-2}\right|_{0} ^{c}=\frac{k}{2} \lim _{c \rightarrow \infty}\left(1-\frac{1}{(c+1)^{2}}\right)=\frac{k}{2} \Rightarrow k=2 \\
\operatorname{Pr}(1 \leq X \leq 4)=\int_{1}^{4} \frac{2}{(x+1)^{3}} d x=-\left.(x+1)^{-2}\right|_{1} ^{4}=\frac{1}{4}-\frac{1}{25}=\frac{21}{100}
\end{gathered}
$$

5. Mothballs tend to evaporate at a rate proportional to their surface area. If V is the volume of a mothball, then its surface area is roughly $V^{2 / 3}$. Suppose that the mothball's volume $V(t)$ (as a function of times t in weeks) decreases at a rate that is twice its surface area, and that it initially has a volume of 27 cubic centimeters.
Construct and solve an initial value problem for the volume $V(t)$. Then determine if and when the mothball vanishes.

$$
\begin{aligned}
\frac{d V}{d t} & =-2 V^{2 / 3} \Rightarrow \int V^{-2 / 3} d V=\int-2 d t \Rightarrow 3 V^{1 / 3}=-2 t+C_{1} \Rightarrow V=\left(-\frac{2}{3} t+C_{2}\right)^{3} \\
27 & =V(0)=C_{2}^{3} \Rightarrow C_{2}=3 \Rightarrow V(t)=\left(3-\frac{2}{3} t\right)^{3}, \quad V(t)=0 \Rightarrow t=\frac{9}{2}
\end{aligned}
$$

6. Consider the surface $z=f(x, y)=1+\frac{1}{\sqrt{x y}}$. At the point on the surface above the point $(x, y)=(4,1)$, what is the direction of steepest descent? Describe this direction with a unit vector in the xy-plane.

$$
\begin{gathered}
\nabla f=\left\langle-\frac{1}{2 x^{3 / 2} y^{1 / 2}},-\frac{1}{2 x^{1 / 2} y^{3 / 2}}\right\rangle \Rightarrow \nabla f=\left\langle-\frac{1}{16},-\frac{1}{4}\right\rangle \\
\text { length }=\sqrt{\left(-\frac{1}{16}\right)^{2}+\left(-\frac{1}{4}\right)^{2}}=\sqrt{\frac{4^{2}+1}{16^{2}}}=\frac{\sqrt{17}}{16} \\
\Rightarrow \text { unit vector of steepest descent }=-\frac{1}{\sqrt{17} / 16}\left\langle-\frac{1}{16},-\frac{1}{4}\right\rangle=\left\langle\frac{1}{\sqrt{17}}, \frac{4}{\sqrt{17}}\right\rangle
\end{gathered}
$$

7. By employing x semi-skilled workers and y skilled workers, a factory can assemble $\sqrt{4 x y+y^{2}}$ custom-built computers per hour. The factory pays each semi-skilled worker $\$ 8$ per hour, and each skilled worker $\$ 20$ per hour. Determine the maximum number of computers the factory can assemble in an hour for a total labour cost of \$720.

$$
\text { optimize } f(x, y)=\sqrt{4 x y+y^{2}} \text { subject to } g(x, y)=8 x+20 y-720=0
$$

$$
\Rightarrow \nabla f=\left\langle\frac{2 y}{\sqrt{4 x y+y^{2}}}, \frac{2 x+y}{\sqrt{4 x y+y^{2}}}\right\rangle, \quad \nabla g=\langle 8,20\rangle
$$

$$
\Rightarrow \text { equations to solve: } \quad \frac{2 y}{\sqrt{4 x y+y^{2}}}=8 \lambda, \quad \frac{2 x+y}{\sqrt{4 x y+y^{2}}}=20 \lambda, \quad 8 x+20 y=720
$$

$$
\Rightarrow \text { eliminate } \lambda: \lambda=\frac{y}{4 \sqrt{4 x y+y^{2}}}=\frac{2 x+y}{20 \sqrt{4 x y+y^{2}}} \Rightarrow \frac{y}{4}=\frac{2 x+y}{20} \Rightarrow y=\frac{1}{2} x
$$

$$
\Rightarrow \text { plug into constraint: } 720=8 x+20 \cdot \frac{1}{2} x=18 x \Rightarrow x=40 \Rightarrow y=20
$$

To see if this is a max or a min, we take an arbitrary other point satisfying the constraint, like $(0,36)$, and compare the values: $f(0,36)=36$ while $f(40,20)=$ $\sqrt{3200+400}=60$, so the maximum number of computers is 60 .
Note: Since the question did not specifically ask for Lagrange Multipliers, this question could have been done with one-variable calculus.
A trick to make things easier is to optimize f^{2} instead of f, which will give the same x and y.
8. Find and classify the critical points of $f(x, y)=7 x^{2}-5 x y+y^{2}+x-y+6$.

$$
\begin{gathered}
f_{x}=14 x-5 y+1=0, \quad f_{y}=-5 x+2 y-1=0 \\
\Rightarrow y=\frac{14 x+1}{5} \Rightarrow 0=-5 x+2 \cdot \frac{14 x+1}{5}-1=-5 x+\frac{28}{5} x+\frac{2}{5}-1=\frac{3}{5} x-\frac{3}{5} \\
\Rightarrow x=1, \quad y=3 \Rightarrow(1,3) \text { is the only critical point } \\
f_{x x}=14, \quad f_{y y}=2, \quad f_{x y}=-5 \Rightarrow D(x, y)=28-(-5)^{2}=3 \\
D(1,3)=3>0, \quad f_{x x}(1,3)=14>0 \Rightarrow(1,3) \text { is a minimum }
\end{gathered}
$$

9. Given the supply and demand curves

$$
p=D(q)=8-q, \quad p=S(q)=\sqrt{q+1}+3,
$$

find the equilibrium point and the consumer/producer surplus.

$$
\begin{gathered}
\sqrt{q+1}+3=8-q \Rightarrow q+1=(5-q)^{2}=25-10 q+q^{2} \Rightarrow 0=q^{2}-11 q+24=(q-3)(q-8) \\
\Rightarrow q_{e}=3, p_{e}=5
\end{gathered}
$$

Note that $q=8$ is not a solution, since $\sqrt{8+1}+3 \neq 8-8$. Look at the graph: $q=8$ is where the line intersects the graph of $-\sqrt{q+1}+3$, which shows up because we squared both sides of the equation while solving.

$$
\begin{aligned}
& C S=\int_{0}^{3}(8-q) d q-3 \cdot 5=24-\frac{9}{2}-15=\frac{9}{2} \\
& P S=3 \cdot 5-\int_{0}^{3}(\sqrt{q+1}+3) d q=15-\left.\left(\frac{2}{3}(q+1)^{3 / 2}+3 q\right)\right|_{0} ^{3}=15-\frac{16}{3}-9+\frac{2}{3}=\frac{4}{3}
\end{aligned}
$$

