Math 105 Final

1a. Determine whether the following improper integral is convergent or divergent. If it is convergent, compute the integral.

$$\int_0^5 \frac{1}{\sqrt{25 - x^2}} \, dx.$$

- 1b. Let $F(x) = \int_{\sin(x)}^{\cos(x)} e^{-t^2} dt$. Compute F'(x)
- 1c. Numerical integration Use the Midpoint Rule with n = 3 to approximate the following integral:

$$\int_{1}^{2.5} (x-1)^2 \, dx$$

1d. Determine whether or not the following limit exists:

$$\lim_{(x,y)\to(5,5)}\frac{x^2+y^2-2yx}{x-y}$$

1e. Consider the quadric surface defined by the equation

$$z = 4x^2 - 9y^2.$$

Draw level curves corresponding to the values $z = 0, \pm 1, 2$. Identify the quadric surface (i.e. is it a paraboloid, hyperboloid, or ellipsoid?)

2. Consider the following Demand and Supply curves:

$$D(q) = 6 - q \ S(q) = q^2.$$

Find the equilibrium point (p_e, q_e) , and compute the Consumers' and Producers' surplus.

- 3. A company estimates that the income produced at time t by its factory will equal 1000 50t. Find the present value over the next ten years, assuming a 5% interest rate.
- 4. Evaluate the following indefinite integral:

$$\int \frac{x^2}{\sqrt{16 - x^2}} \, dx$$

- 5. Find the area of the region in the first quadrant bounded by the curve $y = \sqrt{x}$ and the curve $y = x^3$.
- 6. Let X be a continuous random variable with the following probability density function:

$$f(x) = \frac{1}{21}x^2 \, dx, \quad 1 \le x < 4$$

Find the corresponding cumulative distribution function, F(x). Use F(x) to compute the following probabilities: $P(2 \le X)$, $P(X \le 3)$.

7. A recently deceased person was found in a room, where the room's temperature was $17^{\circ}C$. According to Newton's law of cooling, the the temperature of the body y(t) at t hours after death satisfies the differential equation:

$$y' = k(17 - y),$$

for some constant k.

Assume that the body's temperature at the time of death is $37^{\circ}C$. Further assume that the it is $27^{\circ}C$ after 4 hours. Determine the constant k, and solve the differential equation to find y(t).

- 8. Let $f(x,y) = \sqrt{x^3 + 4xy + y^2x + y^4 4}$.
 - a Find f(1,2), $f_x(1,2)$, and $f_y(1,2)$.
 - b. Approximate the change in f as x changes from 1 to 1.2 and y changes from 2 to 1.9.
 - c. Now assume that y = g(x) is a function of x defined implicitly by the equation

$$f(x,y) = 5.$$

Find the equation of the tangent line to the graph y = g(x) at (x, y) = (1, 2).

9. Using the method of Lagrange Multipliers, find the maximum and minimum of $f(x, y) = 3x^2 - 2y^2 + 2y$, with the constraint $x^2 + y^2 = 1$.

Solutions:

1a. The integral does converge, and is equal to $\frac{\pi}{2}$. 1b. $(-\sin(x))e^{-\cos^2(x)} - (\cos(x))e^{-\sin^2(x)}$. 1c. $\frac{35}{32}$ 1d. The limit does exist, and is equal to 0 1e. The trace for z = 0 is a pair of lines, $2x = \pm 3y$. The trace for z = 1 is the hyperbola $1 = \frac{x^2}{(\frac{1}{2})^2} - \frac{y^2}{(\frac{1}{3})^2}$ The trace for z = -1 is the hyperbola $1 = \frac{y^2}{(\frac{1}{2})^2} - \frac{x^2}{(\frac{1}{2})^2}$ The trace for z = 2 is the hyperbola $1 = \frac{x^2}{(\frac{1}{\sqrt{2}})^2} - \frac{y^2}{(\frac{1}{3\sqrt{2}})^2}$. The quadric surface is a hyperbolic paraboloid. 2. $(p_e, q_e) = (2, 4)$ Producers surplus is $\frac{16}{3}$. Consumers' surplus is 2. 3. $\int_0^{10} (1000 - 50t) e^{-.05t} dt = 6065.3$ 4. $8 \arcsin(\frac{x}{4}) - \frac{1}{2}x\sqrt{16 - x^2}$. 5. $\frac{5}{12}$. 6. $F(x) = \frac{1}{63}(x^3 - 1).$ $P(2 \le X) = 1 - F(2) = \frac{48}{63}$ $P(X \le 3) = F(3) = \frac{80}{63}.$ 7. $k = \frac{1}{4} \ln(2)$. $y(t) = 17 + 20e^{-\frac{1}{4}\ln(2)t}.$ 8a. f(1,2) = 5 $f_x(1,2) = \frac{3}{2} \\ f_y(1,2) = \frac{20}{5} = 4$ 8b. $df = -\frac{1}{10}$. 8c. $y-2 = -\frac{3}{8}(x-1)$

9. Solutions are (0,1), (0,-1), $(\frac{\sqrt{24}}{5},\frac{1}{5})$, and $(-\frac{\sqrt{24}}{5},\frac{1}{5})$.

$$f(0,1) = 0$$

$$f(0,-1) = -4$$

$$f(\pm \frac{\sqrt{24}}{5}, \frac{1}{5}) = \frac{16}{5}.$$

So (0, -1) is the minimum and $(\pm \frac{\sqrt{24}}{5}, \frac{1}{5})$ are both maximum.