Math 105 Final

1a. Determine whether the following improper integral is convergent or divergent. If it is convergent, compute the integral.

$$
\int_{0}^{5} \frac{1}{\sqrt{25-x^{2}}} d x
$$

1b. Let $F(x)=\int_{\sin (x)}^{\cos (x)} e^{-t^{2}} d t$. Compute $F^{\prime}(x)$
1c. Numerical integration Use the Midpoint Rule with $n=3$ to approximate the following integral:

$$
\int_{1}^{2.5}(x-1)^{2} d x
$$

1d. Determine whether or not the following limit exists:

$$
\lim _{(x, y) \rightarrow(5,5)} \frac{x^{2}+y^{2}-2 y x}{x-y}
$$

1e. Consider the quadric surface defined by the equation

$$
z=4 x^{2}-9 y^{2}
$$

Draw level curves corresponding to the values $z=0, \pm 1,2$. Identify the quadric surface (i.e. is it a paraboloid, hyperboloid, or ellipsoid?)
2. Consider the following Demand and Supply curves:

$$
D(q)=6-q \quad S(q)=q^{2} .
$$

Find the equilibrium point $\left(p_{e}, q_{e}\right)$, and compute the Consumers' and Producers' surplus.
3. A company estimates that the income produced at time t by its factory will equal $1000-50 t$. Find the present value over the next ten years, assuming a 5% interest rate.
4. Evaluate the following indefinite integral:

$$
\int \frac{x^{2}}{\sqrt{16-x^{2}}} d x
$$

5. Find the area of the region in the first quadrant bounded by the curve $y=\sqrt{x}$ and the curve $y=x^{3}$.
6. Let X be a continuous random variable with the following probability density function:

$$
f(x)=\frac{1}{21} x^{2} d x, \quad 1 \leq x<4
$$

Find the corresponding cumulative distribution function, $F(x)$. Use $F(x)$ to compute the following probabilities: $P(2 \leq X), P(X \leq 3)$.
7. A recently deceased person was found in a room, where the room's temperature was $17^{\circ} \mathrm{C}$. According to Newton's law of cooling, the the temperature of the body $y(t)$ at t hours after death satisfies the differential equation:

$$
y^{\prime}=k(17-y)
$$

for some constant k.
Assume that the body's temperature at the time of death is $37^{\circ} \mathrm{C}$. Further assume that the it is $27^{\circ} \mathrm{C}$ after 4 hours. Determine the constant k, and solve the differential equation to find $y(t)$.
8. Let $f(x, y)=\sqrt{x^{3}+4 x y+y^{2} x+y^{4}-4}$.
a Find $f(1,2), f_{x}(1,2)$, and $f_{y}(1,2)$.
b. Approximate the change in f as x changes from 1 to 1.2 and y changes from 2 to 1.9 .
c. Now assume that $y=g(x)$ is a function of x defined implicitly by the equation

$$
f(x, y)=5
$$

Find the equation of the tangent line to the graph $y=g(x)$ at $(x, y)=(1,2)$.
9. Using the method of Lagrange Multipliers, find the maximum and minimum of $f(x, y)=$ $3 x^{2}-2 y^{2}+2 y$, with the constraint $x^{2}+y^{2}=1$.

Solutions:
1a. The integral does converge, and is equal to $\frac{\pi}{2}$.
1b. $(-\sin (x)) e^{-\cos ^{2}(x)}-(\cos (x)) e^{-\sin ^{2}(x)}$.
1c. $\frac{35}{32}$
1d. The limit does exist, and is equal to 0
1e. The trace for $z=0$ is a pair of lines, $2 x= \pm 3 y$.
The trace for $z=1$ is the hyperbola $1=\frac{x^{2}}{\left(\frac{1}{2}\right)^{2}}-\frac{y^{2}}{\left(\frac{1}{3}\right)^{2}}$
The trace for $z=-1$ is the hyperbola $1=\frac{y^{2}}{\left(\frac{1}{3}\right)^{2}}-\frac{x^{2}}{\left(\frac{1}{2}\right)^{2}}$
The trace for $z=2$ is the hyperbola $1=\frac{x^{2}}{\left(\frac{1}{\sqrt{2}}\right)^{2}}-\frac{y^{2}}{\left(\frac{1}{3 \sqrt{2}}\right)^{2}}$. The quadric surface is a hyperbolic paraboloid.
2. $\left(p_{e}, q_{e}\right)=(2,4)$ Producers surplus is $\frac{16}{3}$. Consumers' surplus is 2 .
3. $\int_{0}^{10}(1000-50 t) e^{-.05 t} d t=6065.3$
4. $8 \arcsin \left(\frac{x}{4}\right)-\frac{1}{2} x \sqrt{16-x^{2}}$.
5. $\frac{5}{12}$.
6. $F(x)=\frac{1}{63}\left(x^{3}-1\right)$.
$P(2 \leq X)=1-F(2)=\frac{48}{63}$
$P(X \leq 3)=F(3)=\frac{80}{63}$.
7. $k=\frac{1}{4} \ln (2)$.
$y(t)=17+20 e^{-\frac{1}{4} \ln (2) t}$.
8a. $f(1,2)=5$
$f_{x}(1,2)=\frac{3}{2}$
$f_{y}(1,2)=\frac{20}{5}=4$
$8 \mathrm{~b} . d f=-\frac{1}{10}$.
8c. $y-2=-\frac{3}{8}(x-1)$
9. Solutions are $(0,1),(0,-1),\left(\frac{\sqrt{24}}{5}, \frac{1}{5}\right)$, and $\left(-\frac{\sqrt{24}}{5}, \frac{1}{5}\right)$.

$$
\begin{aligned}
f(0,1) & =0 \\
f(0,-1) & =-4 \\
f\left(\pm \frac{\sqrt{24}}{5}, \frac{1}{5}\right) & =\frac{16}{5} .
\end{aligned}
$$

So $(0,-1)$ is the minimum and $\left(\pm \frac{\sqrt{24}}{5}, \frac{1}{5}\right)$ are both maximum.

