Solutions to practice final1

1(a). Answer: Apply two path test. Let $y=m x^{2}, m \neq 1$ and $m \geq 0$. Then $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{1 / 2}}{x^{2}-y}=\lim _{(x, y) \rightarrow(0,0)} \frac{x \cdot \sqrt{m} x}{x^{2}-m x^{2}}=\frac{\sqrt{m}}{1-m}$. If $m=4$, Limit $=$ $-\frac{2}{3}$. If $m=9$, Limit $=-\frac{3}{8}$. So by two path test, the limit does not exist.

1(b). Answer: $F^{\prime}(x)=f\left(e^{x^{2}}\right)\left(e^{x^{2}}\right)^{\prime}=f\left(e^{x^{2}}\right) \cdot e^{x^{2}} \cdot 2 x$. Then $F^{\prime}(1)=$ $f\left(e^{1}\right) \cdot e \cdot 2=4 \cdot e \cdot 2=8 e$.

1(c). Answer: (A) describes an elliptic paraboloid. For 0, the equation of level curve is $\frac{x^{2}}{4}+\frac{y^{2}}{9}=0$, it is just the point $(0,0)$. For 1 , the equation of level curve is $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$, it is a ellipse. There is no level curve corresponding -1 .

1(d). Answer: Let $u=x^{2}$, then $d u=2 x d x$. Then $\int x e^{-x^{2}} d x=$ $\int \frac{1}{2} e^{-u} d u=-\frac{1}{2} e^{-u}+C=-\frac{1}{2} e^{-x^{2}}+C$. Thus $\int_{0}^{\infty} x e^{-x^{2}} d x=\lim _{b \rightarrow \infty} \int_{0}^{b} x e^{-x^{2}} d x=$ $\lim _{b \rightarrow \infty}-\left.\frac{1}{2} e^{-x^{2}}\right|_{0} ^{b}=\lim _{b \rightarrow \infty}-\frac{1}{2}\left[e^{-b^{2}}-e^{0}\right]=\frac{1}{2}$.

1(e). Answer: The distance between point (x, y) and origin point is $f(x, y)=\sqrt{x^{2}+y^{2}}$. Let $(a, b)=(3,4)$, then $f(a, b)=5$. We also have $\frac{\partial f}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}}}$ and $\frac{\partial f}{\partial y}=\frac{y}{\sqrt{x^{2}+y^{2}}}$. Then $\frac{\partial f}{\partial x}(3,4)=\frac{3}{5}$ and $\frac{\partial f}{\partial y}(3,4)=\frac{4}{5}$. Thus $\sqrt{2.98^{2}+4.01^{2}}=f(2.98,4.01) \approx f(3,4)+\frac{\partial f}{\partial x}(3,4) \Delta x+\frac{\partial f}{\partial x}(3,4) \Delta y=$ $5+0.6 \cdot(-0.02)+0.8 \cdot 0.01=5-0.012+0.008=4.996$.

2(a). Answer: Use integration by parts. Let $u=\sin x, d u=\cos x$ and $d v=e^{x} d x, v=e^{x}$. Then $\int e^{x} \sin x d x=e^{x} \sin x-\int e^{x} \cos x d x$. Use integration by parts again. Let $u=\cos x, d u=-\sin x d x$ and $d v=e^{x} d x, v=e^{x}$. Then $\int e^{x} \sin x d x=e^{x} \sin x-e^{x} \cos x-\int e^{x} \sin x d x+C$. So $\int e^{x} \sin x d x=$ $\frac{1}{2}\left(e^{x} \sin x-e^{x} \cos x\right)+C$. Thus $\int_{0}^{\pi / 2} e^{x} \sin x d x=\left.\frac{1}{2}\left(e^{x} \sin x-e^{x} \cos x\right)\right|_{0} ^{\pi / 2}=$ $\frac{1}{2}\left[e^{\pi / 2} \sin \frac{\pi}{2}-e^{\pi / 2} \cos \frac{\pi}{2}-e^{0} \sin 0+e^{0} \cos 0\right]=\frac{1}{2}\left(e^{\frac{\pi}{2}}+1\right)$.

Answer: Divide the interval into two subintervals. Then $\Delta x=\frac{\pi}{4}$ and we have endpoints $0, \frac{\pi}{4}, \frac{\pi}{2}$. Then by trapezoid rule we have $T_{2}=$ $\frac{1}{2}\left(e^{0} \sin 0+2 e^{\pi / 4} \sin \pi / 4+e^{\pi / 2} \sin \pi / 2\right) \frac{\pi}{4}=\frac{\pi}{8}\left[\sqrt{2} e^{\pi / 4}+e^{\pi / 2}\right]$.
3. Answer: To find the intersection point of these two parabola, set $x^{2}=x^{2}-4 x+4$, then $x=1$. On $[0,1] g(x) \geq f(x)$ and on $[1,3]$ $f(x) \geq g(x)$. Then Area $=\int_{0}^{1}\left(x^{2}-4 x+4-x^{2}\right) d x+\int_{1}^{3}\left(x^{2}-x^{2}+4 x-\right.$ 4) $d x=\int_{0}^{1}(-4 x+4) d x+\int_{1}^{3}(4 x-4) d x=\left.\left(-2 x^{2}+4 x\right)\right|_{0} ^{1}+\left.\left(2 x^{2}-4\right)\right|_{1} ^{3}=$ $[-2+4]+\left[2 \cdot 3^{2}-4 \cdot 3-2 \cdot 1^{1}+4 \cdot 1\right]=10$.
4.Answer: (a). $y^{\prime}(t)=0.12 y(t)-A, y(0)=50,000$.
(b). The number of deers remains constant implies $0.12 \cdot 50,000-A=0$.

So $A=6000$.
(c). Suppose after T years the dears are extinct. Then

$$
\int_{0}^{T} 7200 e^{-0.12 t} d t=50,000
$$

Ont the other hand,

$$
\begin{aligned}
\int_{0}^{T} 7200 e^{-0.12 t} d t & =7200 \int_{0}^{T} e^{-0.12 t} d t=\left.7200 \frac{1}{-0.12} e^{-0.12 t}\right|_{0} ^{T} \\
& =7200 \frac{e^{-0.12 T}-1}{-0.12}=60000\left[1-e^{-0.12 T}\right]
\end{aligned}
$$

Thus $60000\left[1-e^{-0.12 T}\right]=50000$, then $T=\frac{\ln 6}{0.12} \approx 15$. So After 15 years the dears will go extinct.
5. Answer: The profit function is

$$
P(x, y)=x(300-x)+y\left(61-\frac{3 y}{x}\right)-200 x-y
$$

Now we are trying to calculate the critical points. We have

$$
\begin{gather*}
\frac{\partial P}{\partial x}=100-2 x+\frac{3 y^{2}}{x^{2}}=0 \tag{1}\\
\frac{\partial P}{\partial y}=60-\frac{6 y}{x}=0 \tag{2}
\end{gather*}
$$

From (2), we have $\frac{y}{x}=10$. Substituting into (1), we have $100-2 x-3(10)^{2}$. Thus $x=200, y=2000$.
6. Answer: The constraint in this case is $480 x+40 y=5000$. So we can apply the Lagrange multiplier method

$$
F(x, y, \lambda)=1000 \sqrt{6 x^{2}+y^{2}}+\lambda(480 x+40 y-5000)
$$

Then

$$
\begin{align*}
& \frac{\partial F}{\partial x}=1000 \frac{6 x}{\sqrt{6 x^{2}+y^{2}}}+480 \lambda=0 \tag{3}\\
& \frac{\partial F}{\partial y}=1000 \frac{y}{\sqrt{6 x^{2}+y^{2}}}+40 \lambda=0 \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial F}{\partial \lambda}=480 x+4 y-5000=0 \tag{5}
\end{equation*}
$$

From (3) and (4), we have

$$
\begin{align*}
& 1000 \frac{6 x}{\sqrt{6 x^{2}+y^{2}}}=-480 \lambda \tag{6}\\
& 1000 \frac{y}{\sqrt{6 x^{2}+y^{2}}}=-40 \lambda \tag{7}
\end{align*}
$$

Let $(6) /(7)$, we have $x=2 y$. Substitute them into (5). Then we have $x=10, y=5$.
7. Answer: Set $0.05(q-10)^{2}=0.15 q+2$. We have $q_{e}=3$. The $p_{e}=2.45$. So the equilibrium point is $(3,2.45)$. Then the consumer surplus is

$$
\int_{0}^{3} 0.05(q-10)^{2} d q-p_{e} q_{e}=\left.\frac{0.05}{3}(q-10)^{3}\right|_{0} ^{3}-2.45 \times 3=3.6 .
$$

8. Answer: Since $\frac{\partial f}{\partial x}=\frac{e^{x}}{1+e^{y}}$ and $\frac{\partial f}{\partial y}=\frac{-e^{x+y}}{\left(1+e^{y}\right)^{2}}$. Then the gradient at $(0,0)$ is $\nabla f(0,0)=<\frac{1}{2},-\frac{1}{4}>$. So the maximal increasing rate is $|\nabla f(0,0)|=\left|<\frac{1}{2},-\frac{1}{4}>\right|=\frac{\sqrt{5}}{4}$, and the corresponding direction is $\frac{1}{\frac{\sqrt{5}}{4}}<\frac{1}{2},-\frac{1}{4}>=\left\langle\frac{2}{\sqrt{5}},-\frac{1}{\sqrt{5}}>\right.$.

9. Answer:

$$
\begin{aligned}
\int_{0}^{\pi} K|\cos (x)| d x & =K\left[\int_{0}^{\pi / 2} \cos x d x+\int_{\pi / 2}^{\pi}(-\cos x) d x\right] \\
& =K\left[\left.\sin x\right|_{0} ^{\pi / 2}-\left.\sin x\right|_{\pi / 2} ^{\pi}\right]=2 K=1
\end{aligned}
$$

So $K=\frac{1}{2}$.

