Solutions to Math 105 Practice Midterm2, Spring 2011

1. Short answer questions

(1) Let $u = \arctan x$ and $du = \frac{1}{x^2+1}dx$. Then

$$\int \frac{\arctan x}{x^2 + 1} \, dx = \int u \, du = \frac{1}{2}u^2 + C = \frac{1}{2}(\arctan x)^2 + C.$$

So

$$\int_{1}^{\infty} \frac{\arctan x}{x^{2}+1} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{\arctan x}{x^{2}+1} dx = \lim_{b \to \infty} \left[\frac{1}{2} (\arctan x)^{2}\right]|_{1}^{b}$$
$$= \lim_{b \to \infty} \frac{1}{2} \left[(\arctan b)^{2} - (\arctan 1)^{2} \right] = \frac{1}{2} \left[(\frac{\pi}{2})^{2} - (\frac{\pi}{4})^{2} \right] = \boxed{\frac{3\pi^{2}}{32}}.$$

(2). The differential equation is separable. So we have

$$\frac{x}{x^2+5} dx = dt, \text{ then } \int \frac{x}{x^2+5} dx = \int dt$$

Let $u = x^2 + 5$ and du = 2x dx. Then

$$\int \frac{x}{x^2 + 5} dx = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln|u| + C.$$

So we have

$$\frac{1}{2}\ln|u| = t + C, \ \ln|u| = 2t + 2C, \ |u| = Ce^{2t}, \ x^2 + 5 = Ce^{2t}, \ x^2 = Ce^{2t} - 5.$$

Since x(0) = 1, we have $1^2 = Ce^0 - 5$, that is C = 6. Thus $x(t) = \sqrt{6e^{2t} - 5}$. (We do not take the branch $x = -\sqrt{6e^{2t} - 5}$ because x(0) = 1 > 0.)

(3). The function $\frac{x^2y+xy^2}{y^3-x^3}$ is not well-define at (0,0) and can not be simplified. We can apply "two path test". Let y = mx. Notice that $m \neq 1$ because y = x is not in the domain. Then

$$\lim_{(x,y)\to(0,0)}\frac{x^2y+xy^2}{y^3-x^3} = \lim_{(x,y)\to(0,0)}\frac{x^2mx+x(mx)^2}{(mx)^3-x^3} = \lim_{(x,y)\to(0,0)}\frac{x^3(m+m^2)}{x^3(m^3-1)} = \frac{m+m^2}{m^3-1}.$$

When m = 0, Limit = 0, when m = 2, $Limit = \frac{2+2^2}{2^3-1} = \frac{6}{7}$. So the limit does not exist

(4). When (x, y) = (6, 1), $z = \sqrt{6 - 1^2 - 1} = 2$. So the level curve through (6, 1) has the equation $2 = \sqrt{x - y^2 - 1}$, that is $y^2 = x - 5$. It is a parabola symmetric by x-axis with x-intersection 5. The level curve has the form g(x, y) = 0, where $g(x, y) = y^2 - x + 5$. Since $g_x = -1$, and $g_y = 2y$ then by differentiation implicitly we have

$$\frac{dy}{dx} = -\frac{g_x}{g_y} = \frac{1}{2y}$$
. Thus $\frac{dy}{dx}|_{(6,1)} = \frac{1}{2y}|_{(6,1)} = \boxed{\frac{1}{2}}$

2. First calculate the critical points: $f_x = 4x^3 - 4y = 0$, $f_y = 4y - 4x = 0$. From the second equation we have y = x. Substitute into the first we have $x^3 - x = x(x-1)(x+1) = 0$. So x = 0, -1, 1. We have three critical points (0, 0), (-1, -1) and (1, 1). We apply the second derivative test to classify the critical points.

 $\begin{aligned} f_{xx} &= 12x^2, \ f_{yy} = 4 \ \text{and} \ f_{xy} = -4. \ \text{Then for } (0,0), \ f_{xx} = 0, \ D(0,0) = 0 \\ 4 - (-4)^2 &= -16 < 0. \ \text{Thus } (0,0) \ \text{is a saddle point}. \ \text{For } (1,1), \ f_{xx} = 12 > 0, \\ D(1,1) &= 12 \\ \cdot 4 - (-4)^2 &= 48 - 16 \\ = 32 > 0. \ \text{Thus } (1,1) \ \text{is a local minimum}. \end{aligned}$ For $(-1,-1), \ f_{xx} = 12 > 0, \ D(-1,-1) \\ = 12 \\ \cdot 4 - (-4)^2 \\ = 48 - 16 \\ = 32 > 0. \ \text{Thus } (-1,-1) \ \text{is also a local minimum}. \end{aligned}$

3.(a). The differential equation is y'(t) = y(t)0.05 - A. (b). By formula of present value, we have $\int_0^{25} A \cdot e^{-0.05t} dt = 240,000$. Then

$$A \cdot \int_0^{25} e^{-0.05t} dt = A \cdot \frac{1}{-0.05} e^{-0.05t} |_0^{25} = A \cdot \frac{e^{-1.25} - 1}{-0.05} = 240,000.$$

Thus

$$A = 240,000 \cdot \frac{0.05}{1 - e^{-1.25}} = \boxed{\frac{12,000}{1 - e^{-1.25}} \approx 16818.6}.$$

(c). The total interest paid is $16818.6 \times 25 - 240,000 \approx \180465 .

4. (a).

$$f_x = \frac{1}{2}(4 - x^2 - \frac{y^2}{4})^{-1/2}(-2x) = \frac{-x}{\sqrt{4 - x^2 - \frac{y^2}{4}}},$$
$$f_y = \frac{1}{2}(4 - x^2 - \frac{y^2}{4})^{-1/2}(-\frac{y}{2}) = \frac{-y}{4\sqrt{4 - x^2 - \frac{y^2}{4}}}.$$

(b). Since $f_x(1,2) = -\frac{1}{\sqrt{2}}, f_y(1,2) = -\frac{1}{2\sqrt{2}}$ then the gradient is

$$\nabla f(1,2) = < -\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}} > .$$

It has length $\sqrt{(-\frac{1}{2})^2 + (-\frac{1}{2\sqrt{2}})^2} = \frac{\sqrt{5}}{2\sqrt{2}}$. Then the unit vector giving direction of gradient is $\boxed{\langle -\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \rangle}$. Assume $\langle x, y \rangle$ is the vector pointing

the direction where there is no instantaneous change. Then $\langle x, y \rangle \cdot \langle -\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \rangle = 0$, that is $-\frac{2}{\sqrt{5}}x - \frac{1}{\sqrt{5}}y = 0$. x = 1, y = -2 is a solution. So $\langle 1, -2 \rangle$ is the desired vector. It has length $\sqrt{1^2 + (-2)^2} = \sqrt{5}$. Then the unit vector is $\boxed{\langle \frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}} \rangle}$.

(c). Notice that $\frac{dx}{dt} = 1$, $\frac{dy}{dt} = 2t$ and x = t, $y = t^2 + 1$. Then by chain rule we have

$$\begin{aligned} \frac{dz}{dt} &= \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt} \\ &= \frac{-x}{\sqrt{4 - x^2 - \frac{y^2}{4}}} + \frac{-y}{4\sqrt{4 - x^2 - \frac{y^2}{4}}}(2t) \end{aligned}$$

At point (1, 2, f(1, 2)), we have x = 1, y = 2, t = 1. So the changing rate is

$$\frac{dz}{dt}\Big|_{t=1} = \frac{-x}{\sqrt{4 - x^2 - \frac{y^2}{4}}}\Big|_{x=1,y=2} + \frac{-y}{4\sqrt{4 - x^2 - \frac{y^2}{4}}}(2t)\Big|_{x=1,y=2,t=1}$$
$$= -\frac{1}{\sqrt{2}} - \frac{1}{4\sqrt{2}} \cdot 4 = \boxed{-\sqrt{2}}.$$

5. First sketch the graph of these two functions. Then calculate the intersection points. Let $x^3 - 4x = -x^2 + 2x$. We have $x^3 + x^2 - 6x = x(x^2 + x - 6) = x(x-2)(x+3) = 0$. Then for $x \ge 0$, we have two intersection points x = 0 and x = 2. Also, one can figure out that g(x) is larger on the interval [0, 2]. Thus

$$Area = \int_0^2 (-x^2 + 2x) - (x^3 - 4x) \, dx = \int_0^2 (-x^3 - x^2 + 6x) \, dx$$
$$= \left[-\frac{1}{4}x^4 - \frac{1}{3}x^3 + 3x^2 \right]_0^2 = \boxed{\frac{16}{3}}.$$