Math 105

Practice Midterm 2 for Midterm 2

This practice midterm may be harder and/or longer than the real midterm.
Not all question will be worth the same number of points.

1. Find the area of the region in the first quadrant that is bounded above by $y=\sqrt{x}$ and below by the x-axis and the line $y=x-2$.
2. A bank account has $\$ 20,000$ earning 5% interest compounded continuously. A pensioner uses the account to pay himself an annuity, drawing continuously at a $\$ 2000$ annual rate. How long will it take for the the balance in the account to drop to zero?
3. Sketch the $x y$-trace, $x z$-trace, and $y z$-trace of the surface $z=4 y^{2}-9 x^{2}$.
4. Evaluate the limit $\lim _{(x, y) \rightarrow(4,1)} \frac{x^{2}-4 x y^{4}}{\sqrt{x}-2 y^{2}}$, or show that it doesn't exist.
5. Consider the function $f(x, y)=x^{2}-3 y^{2}$.
(a) Calculate f_{x} and f_{y}.
(b) Find the rate of maximum increase when $x=3, y=2$.
(c) Sketch the level curve at height $z=4$. Find the slope $\frac{d y}{d x}$ of the tangent line to this level curve at $(x, y)=(4,2)$.
6. Find the linear approximation for $\sqrt{(3.06)^{2}+(3.92)^{2}}$.
7. Find the critical points of $f(x, y)=3 y^{2}-2 y^{3}-3 x^{2}+6 x y$, and classify each one as a maximum, minimum or saddle point.
