Math 105 - Practice Midterm 2 for Midterm 2 Solutions

This practice midterm may be harder and/or longer than the real midterm.
Not all question will be worth the same number of points.

1. Find the area of the region in the first quadrant that is bounded above by $y=\sqrt{x}$ and below by the x-axis and the line $y=x-2$.
See the last page of these solutions.
2. A bank account has $\$ 20,000$ earning 5% interest compounded continuously. A pensioner uses the account to pay himself an annuity, drawing continuously at a $\$ 2000$ annual rate. How long will it take for the balance in the account to drop to zero?

$$
\begin{gathered}
\frac{d x}{d t}=0.05 x-2000=0.05(x-40000), \quad x(0)=20000 \\
\Rightarrow \quad \int \frac{1}{x-40000} d x=\int 0.05 d t \Rightarrow \ln |x-40000|=0.05 t+C_{1} . \\
\Rightarrow \quad \pm(x-40000)=e^{0.05 t+C_{1}}=e^{C_{1}} e^{0.05 t} \\
\Rightarrow \quad x=40000+C_{2} e^{0.05 t}
\end{gathered}
$$

where C_{2} can be any number ($e^{C_{1}}$ can only be positive, but because of the \pm we can have $C_{2}= \pm e^{C_{1}}$).

$$
\begin{aligned}
20000= & x(0)=40000+C_{2} e^{0.05 \cdot 0}=40000+C_{2} \Rightarrow C_{2}=-20000 \\
& \Rightarrow x(t)=40000-20000 e^{0.05 t}=20000\left(2-e^{0.05 t}\right)
\end{aligned}
$$

The balance will equal zero when

$$
0=2-e^{0.05 t} \Rightarrow t=\frac{1}{0.05} \ln (2)=20 \ln (2)(\approx 14 \text { years })
$$

3. Sketch the $x y$-trace, $x z$-trace, and $y z$-trace of the surface $z=4 y^{2}-9 x^{2}$. See the last page of these solutions.
4. Evaluate the limit $\lim _{(x, y) \rightarrow(4,1)} \frac{x^{2}-4 x y^{4}}{\sqrt{x}-2 y^{2}}$, or show that it doesn't exist.

$$
\begin{gathered}
\lim _{(x, y) \rightarrow(4,1)} \frac{x^{2}-4 x y^{4}}{\sqrt{x}-2 y^{2}}=\lim _{(x, y) \rightarrow(4,1)} \frac{x\left(x-4 y^{4}\right)}{\sqrt{x}-2 y^{2}}=\lim _{(x, y) \rightarrow(4,1)} \frac{x\left(\sqrt{x}-2 y^{2}\right)\left(\sqrt{x}+2 y^{2}\right)}{\sqrt{x}-2 y^{2}} \\
=\lim _{(x, y) \rightarrow(4,1)} x\left(\sqrt{x}+2 y^{2}\right)=4\left(\sqrt{4}+2 \cdot 1^{2}\right)=16 .
\end{gathered}
$$

We could also have multiplied by the conjugate $\sqrt{x}+2 y^{2}$ in the numerator and denominator.
5. Consider the function $f(x, y)=x^{2}-3 y^{2}$.
(a) Calculate f_{x} and f_{y}.

$$
f_{x}(x, y)=2 x, \quad f_{y}(x, y)=-6 y
$$

(b) Find the rate of maximum increase when $x=3, y=2$.

The rate of maximum increase is $|\nabla f(3,2)|$, the length of the gradient vector, which is

$$
\begin{gathered}
\nabla f(3,2)=\left\langle f_{x}(3,2), f_{y}(3,2)\right\rangle=\langle 2 \cdot 3,-6 \cdot 2\rangle=\langle 6,-12\rangle \\
\Rightarrow \\
|\nabla f(3,2)|=\sqrt{6^{2}+(-12)^{2}}=\sqrt{36+144}=\sqrt{180}=6 \sqrt{5} .
\end{gathered}
$$

(c) Sketch the level curve at height $z=4$. Find the slope $\frac{d y}{d x}$ of the tangent line to this level curve at $(x, y)=(4,2)$.
See the last page of these solutions.
6. Find the linear approximation for $\sqrt{(3.06)^{2}+(3.92)^{2}}$.

We should use $z=f(x, y)=\sqrt{x^{2}+y^{2}}$ and $(a, b)=(3,4)$, and the linear approximation formula for either $L(x, y)$ or $d z$. For both we need

$$
\begin{gathered}
f_{x}=\frac{x}{\sqrt{x^{2}+y^{2}}}, \quad f_{y}=\frac{y}{\sqrt{x^{2}+y^{2}}}, \\
f(3,4)=\sqrt{3^{2}+4^{2}}=\sqrt{25}=5, \quad f_{x}(3,4)=\frac{3}{5}, \quad f_{y}(3,4)=\frac{4}{5} .
\end{gathered}
$$

Using the linear approximation formula

$$
L(x, y)=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

we get the approximation
$L(3.06,3.92)=\frac{3}{5}(3.06-3)+\frac{4}{5}(3.92-4)+5=\frac{3}{5} \cdot 0.06+\frac{4}{5} \cdot(-0.08)+5=0.036-0.064+5=4.972$.
Note: on the midterm, you could leave $\frac{3}{5} \cdot 0.06+\frac{4}{5} \cdot(-0.08)+5$ as your answer (or probably the calculation would be easier).
With the formula

$$
d z=f_{x}(a, b) d x+f_{y}(a, b) d y
$$

we get (with $d x=3.06-3=0.06, d y=3.92-4=-0.08$)

$$
d z=\frac{3}{5} \cdot 0.06+\frac{4}{5} \cdot(-0.08)=0.036-0.064=-0.028
$$

so the approximation is

$$
\sqrt{(3.06)^{2}+(3.92)^{2}} \approx f(3,4)+d z=5+(-0.028)=4.972
$$

Note: the actual value is $\sqrt{(3.06)^{2}+(3.92)^{2}}=4.9729 \cdots$.
7. Find the critical points of $f(x, y)=3 y^{2}-2 y^{3}-3 x^{2}+6 x y$, and classify each one as a maximum, minimum or saddle point.

$$
f_{x}=-6 x+6 y=0, \quad f_{y}=6 y-6 y^{2}+6 x=0
$$

To solve these equations, we can get $y=x$ from the first equation, and plug that into the second:

$$
\Rightarrow 6 y-6 y^{2}+6 y=0 \Rightarrow 0=12 y-6 y^{2}=6 y(2-y) \quad \Rightarrow \quad y=0, y=2
$$

So the critical points are $(0,0)$ and $(2,2)$.
To classify them with the Second Derivative Test, we need the second partial derivatives and the discriminant:

$$
\begin{gathered}
f_{x x}=-6, \quad f_{y y}=6-12 y, \quad f_{x y}=6 \\
\Rightarrow \quad D(x, y)=f_{x x} f_{y y}-f_{x y}^{2}=-6(6-12 y)-6^{2}=-72+72 y=72(y-1) .
\end{gathered}
$$

Then for the critical point $(0,0)$ we have $D(0,0)=-72<0$, so $(0,0)$ is a saddle point. For $(2,2)$ we have $D(2,2)=72>0$, so we look at $f_{x x}(2,2)=-6<0$, which tells us that $(2,2)$ is a local maximum .

1 area in first quadrant between $y=\sqrt{x}$, ono $2 n$ the x-axis and $y=x-2$

$$
\begin{aligned}
x-2=\sqrt{x} & \Rightarrow(x-2)^{2}=x \\
& \Rightarrow x^{2}-5 x+4=0 \\
& \Rightarrow x=4
\end{aligned} \begin{gathered}
(x-4)^{\prime}(x-1) \\
\end{gathered}
$$

$$
\begin{aligned}
\Rightarrow A & =\int_{0}^{2} \sqrt{x} d x+\int_{2}^{4}(\sqrt{x}-(x-2)) d x \\
& =\left.\frac{2}{3} x^{\frac{3}{2}}\right|_{0} ^{2}+\left.\left(\frac{2}{3} x^{\frac{3}{2}}-\frac{1}{2} x^{2}+2 x\right)\right|_{2} ^{4} \\
& =\frac{2}{3} \frac{3}{2}+\left(\frac{2}{3} \cdot 8-\frac{1}{2}+16+2-4\right)-\left(\frac{2}{3} \frac{3}{2}-\frac{1}{2} \cdot 4+2 \cdot 2\right) \\
& =\frac{16}{3}+6=\frac{34}{3} .
\end{aligned}
$$

3) $z=4 y^{2}-9 x^{2}$

- $x y$-trace: $z=0 \Rightarrow 4 y^{2}-9 x^{2}=0 \Rightarrow y=\frac{3}{2} x$ or $y=-\frac{3}{2} x$

$$
(24-3 x)(24+3 x)^{11} \quad \Rightarrow \text { lines: }
$$

-xz-trace: $y=0 \Rightarrow z=-9 x^{2}$
\Rightarrow parabola:

- yz-trace: $x=0 \Rightarrow z=4 y^{2}$

Sc) $4=x^{2}-3 y^{2} \Rightarrow$ hyperbola

$$
\begin{aligned}
& \frac{\text { Slope at }(4,2):}{\text { implicitdiffe } \Rightarrow 0=2 x-6 y \frac{d y}{d x}} \\
& \quad \Rightarrow \frac{d y}{d x}=\frac{x}{3 y} \\
& \text { at }(4,2): \frac{d y}{d x}=\frac{4}{6}=\frac{2}{3}
\end{aligned}
$$

