Math 105

Practice Midterm 1 for Midterm 2

This practice midterm may be harder and/or longer than the real midterm.
Not all question will be worth the same number of points.

1. Evaluate $\int_{0}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} d x$, or show that it doesn't exist.
2. Solve the initial value problem $y^{\prime}=\frac{1}{\sqrt{x y}}, y(1)=4$.
3. Find an equation for the plane that is parallel to $x-2 y+6 z=1$ and contains the point ($4,0,2$).
4. Sketch the level curves of $z=y^{2}-\frac{1}{4} x^{2}$ at the heights $z=-1,0,1$.
5. Evaluate the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{5 x-2 y^{2}}{x+2 y^{2}}$, or show that it doesn't exist.
6. Consider the hill given by the function $z=f(x, y)=\sqrt{1-x^{2}-4 y^{2}}$.
(a) Compute f_{x} and f_{y}.
(b) Find the unit vector that gives the direction of steepest ascent at the point $\left(\frac{1}{2}, \frac{1}{4}, f\left(\frac{1}{2}, \frac{1}{4}\right)\right)$ on the hill. Also find a unit vector that gives the direction of no change at that point.
(c) Suppose you're walking over the hill along the path that is right above the path $(x(t), y(t))=\left(t, t^{2}\right)$ in the $x y$-plane. As you pass the point $\left(\frac{1}{2}, \frac{1}{4}, f\left(\frac{1}{2}, \frac{1}{4}\right)\right)$, at what rate is your height changing?
7. Find the critical points of $f(x, y)=\frac{1}{2} x^{2}+4 x y+y^{3}+8 y^{2}+3 x+2$, and classify each one as a maximum, minimum or saddle point.
