Math 105 - Practice Midterm 1 for Midterm 2 Solutions

This practice midterm may be harder and/or longer than the real midterm.
Not all question will be worth the same number of points.

1. Evaluate $\int_{0}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} d x$, or show that it doesn't exist.

Let's first evaluate the indefinite integral with the substitution $u=\sqrt{x}, 2 d u=\frac{1}{\sqrt{x}} d x$:

$$
\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x=\int 2 e^{-u} d u=-2 e^{-u}=-2 e^{-\sqrt{x}}
$$

Then the improper integral is

$$
\int_{0}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} d x=\left.\lim _{c \rightarrow \infty}\left(-2 e^{-\sqrt{x}}\right)\right|_{0} ^{c}=-2 \lim _{c \rightarrow \infty}\left(e^{-\sqrt{c}}-1\right)=-2 \cdot(0-1)=2 .
$$

2. Solve the initial value problem $y^{\prime}=\frac{1}{\sqrt{x y}}, y(1)=4$.

$$
\begin{gathered}
\frac{d y}{d x}=\frac{1}{\sqrt{x} \sqrt{y}} \Rightarrow \int \sqrt{y} d y=\int \frac{1}{\sqrt{x}} d x \\
\Rightarrow \frac{2}{3} y^{3 / 2}=2 \sqrt{x}+C_{1} \Rightarrow y^{3 / 2}=3 \sqrt{x}+C_{2} \\
\Rightarrow y=\left(3 \sqrt{x}+C_{2}\right)^{2 / 3} . \\
y(1)=4 \Rightarrow 4=\left(3+C_{2}\right)^{2 / 3} \Rightarrow 3+C_{2}=4^{3 / 2}=8 \Rightarrow C_{2}=5 \\
\Rightarrow y=(3 \sqrt{x}+5)^{2 / 3} .
\end{gathered}
$$

3. Find an equation for the plane that is parallel to $x-2 y+6 z=1$ and contains the point $(4,0,2)$.
A plane parallel to that one will have the same normal direction, so we can find an equation for it with the same normal vector $\langle 1,-2,6\rangle$, of the form

$$
x-2 y+6 z=d
$$

Then the point $(4,0,2)$ determines the d :

$$
\begin{aligned}
& 4-2 \cdot 0+6 \cdot 2=16=d \\
& \Rightarrow \quad x-2 y+6 z=16 .
\end{aligned}
$$

4. Sketch the level curves of $z=y^{2}-\frac{1}{4} x^{2}$ at the heights $z=-1,0,1$. See the last page of these solutions.
5. Evaluate the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{5 x-2 y^{2}}{x+2 y^{2}}$, or show that it doesn't exist.

Plugging in $(0,0)$ would give $\frac{\text { zero }}{\text { Zero }}$, but none of the usual tricks seems to simplify this limit. So we should try to use the 2-path test. We can try to approach over a general line $y=m x$:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{5 x-2 y^{2}}{x+2 y^{2}} \xrightarrow{y=m x} \lim _{x \rightarrow 0} \frac{5 x-2 m^{2} x^{2}}{x+2 m^{2} x^{2}}=\lim _{x \rightarrow 0} \frac{5-2 m^{2} x}{1+2 m^{2} x}=5,
$$

so over all these lines we get the same value, and we can't use the 2-path test with two of these lines.
However, there is one line that's not included in $y=m x$, namely $x=0$ (the y-axis; it corresponds to ' $m=\infty$ '). If we approach over that line, we get

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{5 x-2 y^{2}}{x+2 y^{2}} \xrightarrow{x=0} \lim _{y \rightarrow 0} \frac{-2 y^{2}}{2 y^{2}}=\lim _{y \rightarrow 0}-1=-1 .
$$

Hence we can apply the 2-path test with $x=0$ and for instance $y=0$: over these two paths we get different values, so the limit does not exist.
Suppose that we didn't think of the possibility $x=0$. Then we could proceed to try paths of the form $y=m x^{a}$, and looking at the exponents of x and y in the limit, we should try $y=m \sqrt{x}$, because then

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{5 x-2 y^{2}}{x+2 y^{2}} \xrightarrow{y=m \sqrt{x}} \lim _{x \rightarrow 0} \frac{5 x-2 m^{2} x}{x+2 m^{2} x}=\lim _{x \rightarrow 0} \frac{5-2 m^{2}}{1+2 m^{2}}=\frac{5-2 m^{2}}{1+2 m^{2}} .
$$

Hence we get different values for, say, $m=0$ and $m=1$, so along the two paths $y=0$ and $y=\sqrt{x}$, we get different values, and by the 2-path test the limit does not exist.

Note: the above is a detailed explanation; in your solution you do not have to show all of this, you only have to give two paths and show that you get different values for the limit.
6. Consider the hill given by the function $z=f(x, y)=\sqrt{1-x^{2}-4 y^{2}}$.
(a) Compute f_{x} and f_{y}.

$$
\Rightarrow \quad f_{x}(x, y)=\frac{-x}{\sqrt{1-x^{2}-4 y^{2}}}, \quad f_{y}(x, y)=\frac{-4 y}{\sqrt{1-x^{2}-4 y^{2}}}
$$

(b) Find the unit vector that gives the direction of steepest ascent at the point $\left(\frac{1}{2}, \frac{1}{4}, f\left(\frac{1}{2}, \frac{1}{4}\right)\right)$ on the hill. Also find a unit vector that gives the direction of no change at that point.
The direction of steepest ascent is the direction of the gradient vector evaluated at the point $(x, y)=\left(\frac{1}{2}, \frac{1}{4}\right)$:

$$
\nabla f\left(\frac{1}{2}, \frac{1}{4}\right)=\left\langle\frac{-1 / 2}{\sqrt{1-\frac{1}{4}-4 \cdot \frac{1}{16}}}, \frac{-4 \cdot 1 / 4}{\sqrt{1-\frac{1}{4}-4 \cdot \frac{1}{16}}}\right\rangle=\left\langle-\frac{1}{2} \cdot \frac{1}{\sqrt{\frac{1}{2}}}, \frac{-1}{\sqrt{\frac{1}{2}}}\right\rangle=\left\langle-\frac{1}{\sqrt{2}},-\sqrt{2}\right\rangle .
$$

But this is not a unit vector, since its length is

$$
\sqrt{\left(-\frac{1}{\sqrt{2}}\right)^{2}+(-\sqrt{2})^{2}}=\sqrt{\frac{1}{2}+2}=\sqrt{\frac{5}{2}}
$$

Hence the unit vector that gives the direction of steepest ascent is what we get if we divide the gradient vector by its length:

$$
\frac{1}{\sqrt{5 / 2}}\left\langle-\frac{1}{\sqrt{2}},-\sqrt{2}\right\rangle=\left\langle-\frac{\sqrt{2}}{\sqrt{5}} \cdot \frac{1}{\sqrt{2}},-\frac{\sqrt{2}}{\sqrt{5}} \cdot \sqrt{2}\right\rangle=\left\langle-\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}\right\rangle .
$$

The direction of no change is given by either of the two unit vectors orthogonal to the one above:

$$
\left\langle-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right\rangle \text { or }\left\langle\frac{2}{\sqrt{5}},-\frac{1}{\sqrt{5}}\right\rangle .
$$

Here we use the fact that the two unit vectors orthogonal to a unit vector $\langle a, b\rangle$ are $\langle b,-a\rangle$ and $\langle-b, a\rangle$.
(c) Suppose you're walking over the hill along the path that is right above the path $(x(t), y(t))=\left(t, t^{2}\right)$ in the $x y$-plane. As you pass the point $\left(\frac{1}{2}, \frac{1}{4}, f\left(\frac{1}{2}, \frac{1}{4}\right)\right)$, at what rate is your height changing?

$$
\begin{gathered}
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\left.f_{x}(1 / 2,1 / 4) \cdot\left(\frac{d}{d t} t\right)\right|_{t=1 / 2}+\left.f_{y}(1 / 2,1 / 4) \cdot\left(\frac{d}{d t} t^{2}\right)\right|_{t=1 / 2} \\
=-\frac{1}{\sqrt{2}} \cdot 1+(-\sqrt{2}) \cdot\left(\left(2 \cdot \frac{1}{2}\right)=-\frac{1}{\sqrt{2}}-\sqrt{2}\left(=-\frac{3}{\sqrt{2}}\right)\right.
\end{gathered}
$$

7. Find the critical points of $f(x, y)=\frac{1}{2} x^{2}+4 x y+y^{3}+8 y^{2}+3 x+2$, and classify each one as a maximum, minimum or saddle point.

$$
f_{x}=x+4 y+3=0, \quad f_{y}=4 x+3 y^{2}+16 y=0
$$

To solve these equations, we can for instance isolate x from the first equation, and plug that into the second:

$$
\begin{gathered}
x=-4 y-3 \Rightarrow 4(-4 y-3)+3 y^{2}+16 y=0 \\
\Rightarrow 3 y^{2}-12=0 \Rightarrow y^{2}=4 \quad \Rightarrow \quad y= \pm 2
\end{gathered}
$$

Plugging $y=2$ into $x=-4 y-3$ gives $x=-11$, and for $y=-2$ we get $x=5$. So the critical points are $(-11,2)$ and $(5,-2)$.
To classify them using the Second Derivative Test, we need the second partial derivatives and the discriminant:

$$
\begin{gathered}
f_{x x}=1, \quad f_{y y}=6 y+16, \quad f_{x y}=4 \\
\Rightarrow D(x, y)=f_{x x} f_{y y}-f_{x y}^{2}=1 \cdot(6 y+16)-4^{2}=6 y
\end{gathered}
$$

Then for the critical point $(-11,2)$ we have $D(-11,2)=12>0$, so we need to look at $f_{x x}(-11,2)=1>0$, which tells us that $(-11,2)$ is a local minimum.
For $(5,-2)$ we have $D(5,-2)=-12<0$, so $(5,-2)$ is a saddle point.

4 Level curves of $y^{2}-\frac{1}{4} \times x^{2}=z$ for $z=-1,0,1$

- $z=-1 \Rightarrow y^{2}-木 x^{2}=-1 \Rightarrow$ hyperbola: $\begin{aligned}(y=0 & \Rightarrow-4 x^{2}=-1 \\ & \Rightarrow x^{2}=4\end{aligned}$
$\Rightarrow x^{2}=4$
$\Rightarrow x= \pm 2$

- $z=0 \Rightarrow y^{2}-\frac{1}{4} x^{2}=0$

$$
\begin{aligned}
\left(y-\frac{1^{\prime \prime}}{2} x\right)\left(y+\frac{1}{2} x\right) & \Rightarrow y=\frac{1}{2} x \text { or } y=-\frac{1}{2} x \\
& \Rightarrow \text { lines: }
\end{aligned}
$$

$$
\cdot z=1 \Rightarrow y^{2}-\frac{1}{4} x^{2}=1 \Rightarrow \begin{aligned}
& \text { hyperbola: } \\
& \left(x=0 \Rightarrow y^{2}=1\right. \\
& \\
& \Rightarrow y= \pm 1)
\end{aligned}
$$

The level curves together:

