Theorem. If X is a metrizable, locally compact space that is σ-compact, show that $C_{0}(X)$ is separable.

Proof. The theorem will be proved using the following sequence of lemmas.
Lemma 1. Given any locally compact metric space Y, and $y \in Y$, there exists $\delta_{y}>0$ such that $B\left(y ; \delta_{y}\right)$ has compact closure.

Proof. By the definition of local compactness, every $y \in Y$ has a compact neighborhood, which (by definition of a neighborhood) contains an open ball centered at y.

Lemma 2. There exists a countable collection $\mathcal{L}=\left\{L_{m}: m \in \mathbb{N}\right\}$ of compact sets in X with the following property. For any compact set $K \subseteq X$, there exists $L_{m} \in \mathcal{L}$ such that $K \subseteq L_{m}$.
Proof. Since X is σ-compact (i.e. a countable union of compact sets), every open cover of X must have a countable subcover. Since the family of balls $\left\{B\left(x ; \delta_{x}\right)\right.$: $x \in X\}$, where δ_{x} is as in Lemma 1, is an open cover for X, there exists a countable subcollection $\left\{x_{i}: i \geq 1\right\} \subseteq X$ such that

$$
X \subseteq \bigcup_{i=1}^{\infty} B\left(x_{i} ; \delta_{x_{i}}\right)
$$

Let \mathcal{L} denote the collection of sets consisting of all possible finite unions of the closed balls $\overline{B\left(x_{i} ; \delta_{x_{i}}\right)}$. By Lemma 1, each element of \mathcal{L} is a compact subset of X (recall that a finite union of compact sets is compact). Moreover, \mathcal{L} is countable, since the collection of finite subsets of a countable set is countable. Finally, every compact $K \subseteq X$ is contained in a finite union of the $\left\{B\left(x_{i} ; \delta_{x_{i}}\right): i \geq 1\right\}$, and hence is contained in some member of \mathcal{L}.

Construction of a countable dense subset of $C_{0}(X)$

Lemma 3. For any $n \in \mathbb{N}$, there exists a countable covering $\mathcal{U}^{(n)}$ of X by relatively compact open balls with diameter bounded above by $\frac{1}{n}$.

Proof. Since $\left\{B\left(x ; \min \left\{\delta_{x}, \frac{1}{n}\right\}\right): x \in X\right\}$ forms an open cover of X, by σ-compactness we can extract a countable subcover with the desired properties.

For every $n, m \in \mathbb{N}$, let $\mathcal{U}^{(n, m)}=\left\{B_{1}^{(n, m)}, B_{2}^{(n, m)}, \cdots, B_{J_{n, m}}^{(n, m)}\right\} \subseteq \mathcal{U}^{(n)}$ be a finite subcover of L_{m}, where L_{m} is as in Lemma 2. While there may be many choices for $\mathcal{U}^{(n, m)}$, we fix one for every choice of (n, m), and only work with these in the sequel. Applying the partition of unity lemma, there exists a finite collection of functions $\left\{\chi_{j}^{(n, m)}: 1 \leq j \leq J_{n, m}\right\}$ with the following properties: for every $1 \leq j \leq J_{n, m}$,
(i) the function $\chi_{j}^{(n, m)}: X \rightarrow[0,1]$ is continuous,
(ii) $\operatorname{supp}\left(\chi_{j}^{(n, m)}\right) \subseteq \bar{B}_{j}^{(n, m)}$, and
(iii) $\sum_{j} \chi_{j}^{(n, m)}(x) \equiv 1$ for all $x \in L_{m}$.

We now define

$$
\mathfrak{X}_{n, m}=\left\{\sum_{j=1}^{J_{n, m}} a_{j} \chi_{j}^{(n, m)}: a_{j} \in \mathbb{Q} \quad \forall j\right\} \quad \text { and } \quad \mathfrak{X}=\bigcup_{n, m} \mathfrak{X}_{n, m} .
$$

By construction, $\mathfrak{X}_{n, m}$ is countable for every $n, m \in \mathbb{N}$, therefore so is \mathfrak{X}. Further every function in $\mathfrak{X}_{n, m}$ is continuous and has support in the compact set $\bigcup_{j=1}^{J_{n, m}} \bar{B}_{j}^{(n, m)}$, which implies that $\mathfrak{X} \subseteq C_{0}(X)$.

It therefore remains to prove the following.
Lemma 4. \mathfrak{X} is dense in $C_{0}(X)$.
Proof. Fix $f \in C_{0}(X)$ and $\epsilon>0$. Since f is uniformly continuous (why?), there exists $\delta>0$ such that

$$
\begin{equation*}
|f(x)-f(y)|<\frac{\epsilon}{4} \text { whenever } d(x, y)<\delta \tag{1}
\end{equation*}
$$

Let $F_{\epsilon}=\{x \in X:|f(x)|>\epsilon\}$, so that F_{ϵ} is open in X with compact closure. Then $\bar{F}_{\frac{\epsilon}{2}} \subseteq F_{\frac{\epsilon}{4}}$, which implies that $\bar{F}_{\frac{\epsilon}{2}}$ and $F_{\frac{\epsilon}{4}}^{c}$ are disjoint closed sets. Since the map $x \mapsto d\left(x, F_{\frac{\epsilon}{4}}^{c}\right)$ is continuous on X and strictly positive on $F_{\frac{\epsilon}{4}}$, and $\bar{F}_{\frac{\epsilon}{2}}$ is compact, therefore

$$
\begin{equation*}
d=\operatorname{dist}\left(\bar{F}_{\frac{\epsilon}{2}}, F_{\frac{\epsilon}{4}}^{c}\right)>0 . \quad \text { Similarly } d^{\prime}=\operatorname{dist}\left(\bar{F}_{\frac{\epsilon}{4}}, F_{\frac{\epsilon}{8}}^{c}\right)>0 \tag{2}
\end{equation*}
$$

Choose n large enough to that $1 / n<\min \left(\delta, d, d^{\prime}\right)$, where δ and $\left(d, d^{\prime}\right)$ have been defined in (1) and (2) respectively. By Lemma 2, we can pick an integer m such that $\bar{F}_{\frac{\epsilon}{16}} \subseteq L_{m}$. Set

$$
g=\sum_{j=1}^{J_{n, m}} a_{j} \chi_{j}^{(n, m)}, \text { where } \begin{cases}\left|a_{j}-f\left(c_{j}\right)\right|<\frac{\epsilon}{4}, a_{j} \in \mathbb{Q} & \text { if } c_{j} \in F_{\frac{\epsilon}{4}} \tag{3}\\ a_{j}=0 & \text { otherwise }\end{cases}
$$

Here c_{j} denotes the center of the ball $B_{j}^{(n, m)}$. Then

$$
\begin{equation*}
\operatorname{supp}(g) \subseteq \bar{F}_{\frac{\epsilon}{8}} . \tag{4}
\end{equation*}
$$

This is because for $x \in B_{j}^{(n, m)} \backslash F_{\frac{\epsilon}{8}}$, our choice of n implies $c_{j} \notin \bar{F}_{\frac{\epsilon}{4}}$, so that $a_{j}=0$ by (3). Therefore $g \equiv 0$ on $F_{\frac{⿺}{8}}^{c}$.

We claim that $\sup _{x \in X}|f(x)-g(x)|<\epsilon$. To see this, suppose first that $x \notin F_{\frac{\epsilon}{8}}$. Then by the support property (4) of $g,|f(x)-g(x)|=|f(x)| \leq \frac{\epsilon}{8}<\epsilon$. If $x \in F_{\frac{\epsilon}{8}}$, by (iii) on page 1 ,

$$
\begin{aligned}
|f(x)-g(x)|= & \left|\sum_{j}\left(f(x)-a_{j}\right) \chi_{j}^{(n, m)}(x)\right| \\
\leq & \sum_{j}\left|f(x)-a_{j}\right| \chi_{j}^{(n, m)}(x) \\
\leq & \sum_{j: c_{j} \in F_{\frac{\epsilon}{4}}}\left(\left|f(x)-f\left(c_{j}\right)\right|+\left|f\left(c_{j}\right)-a_{j}\right|\right) \chi_{j}^{(n, m)}(x) \\
& +\sum_{j: c_{j} \notin F_{\frac{\epsilon}{4}}}|f(x)| \chi_{j}^{(n, m)}(x) \\
< & \left(\frac{\epsilon}{4}+\frac{\epsilon}{4}\right)+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

In the last two steps of the above calculation we have used the description of a_{j}-s from (3), Lemma 3 and (1). The last step also uses the fact that if $c_{j} \notin F_{\frac{\epsilon}{4}}$ and $1 / n<d$, then (by (2)) for any $x \in B_{j}^{(n, m)}, x \notin \bar{F}_{\frac{\epsilon}{2}}$, so that $|f(x)|<\frac{\epsilon}{2}$.

