1. Let f be holomorphic in an open connected set containing the annulus $\{z \in$ $\left.\mathbb{C}: r_{1} \leq\left|z-z_{0}\right| \leq r_{2}\right\}$, where $0<r_{1}<r_{2}$.
(a) Use an appropriate contour to obtain an integral self-reproducing formula analogous to the Cauchy integral formula for $f(z)$ in terms of the values of f on $C_{r_{1}}$ and $C_{r_{2}}$. Here $C_{r}=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=r\right\}$.
(b) Use the formula you obtained in part (a) to derive the Laurent series expansion of f :

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

and verify that it converges absolutely and uniformly on the annulus.
(c) Derive integral expressions for a_{n} in terms of f analogous to the derivative forms of Cauchy integral formula.

Proof. Let $C_{r_{1}}, C_{r_{2}}$ denote the circle centered at z_{0} radius r_{1}, r_{2} respectively with $0<r_{1}<$ r_{2}. Since $C_{r_{1}}, C_{r_{2}}$ is compact living in the open set Ω (i.e. disjoint from the closed set Ω^{C}) there is some δ - neighborhood of $C_{r_{1}}, C_{r_{2}}$ that live inside Ω. Let ρ_{1}, ρ_{2} be such that $0<\rho_{1}<r_{1}<r_{2}<\rho_{2}$ and $C_{\rho_{1}}, C_{\rho_{2}} \subseteq \Omega$. Let S_{z} be the boundary of the gray sector depicted in the figure which does not contain z. Let R_{z} be the boundary of the remaining white region. Here all integrals over closed curve are taken counterclockwise which we denote by \oint.
Let $g(\zeta)=\frac{f(\zeta)}{\zeta-z}$. Hence by Cauchy's theorem,

$$
\oint_{S_{z}} g(\zeta) d \zeta=0, \oint_{\substack{R_{z} \\ 1}} g(\zeta) d \zeta=2 \pi i f(z)
$$

Here our integrals are taken in anticlockwise direction. Hence

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i}\left[\oint_{S_{Z}} g(\zeta) d \zeta+\oint_{R_{Z}} g(\zeta) d \zeta\right]=\frac{1}{2 \pi i}\left[\oint_{C_{r_{2}}} \frac{f(\zeta)}{\zeta-z} d \zeta-\oint_{C_{r_{1}}} \frac{f(\zeta)}{\zeta-z} d \zeta\right] \tag{1}
\end{equation*}
$$

Note that $|f(\zeta)| \leq M$ for some $M>0$ on $C_{\rho_{2}}$ or $C_{\rho_{1}}$ which are compact. Now if $\zeta \in C_{\rho_{2}}$ and $\left|z-z_{0}\right| \leq r_{2}$ then $\left|\frac{z-z_{0}}{\zeta-z_{0}}\right|<1$ hence

$$
\frac{f(\zeta)}{\zeta-z}=\frac{f(\zeta)}{\left(\zeta-z_{0}\right)-\left(z-z_{0}\right)}=\frac{f(\zeta)}{\left(\zeta-z_{0}\right)\left(1-\frac{z-z_{0}}{\zeta-z_{0}}\right)}=\frac{f(\zeta)}{\zeta-z_{0}} \sum_{n=0}^{\infty}\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)^{n}
$$

We claim that $\frac{f(\zeta)}{\zeta-z_{0}} \sum_{n=0}^{\infty}\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)^{n}$ converges uniformly on $\left\{z:\left|z-z_{0}\right| \leq r_{2}\right\}$. To see this,if $\left|z-z_{0}\right| \leq r_{2}$ we have

$$
\left|\frac{f(\zeta)}{\zeta-z_{0}} \sum_{n=0}^{\infty}\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)^{n}\right| \leq \frac{M}{r_{2}} \sum_{n=0}^{\infty}\left|\frac{r_{2}}{\rho_{2}}\right|^{n}
$$

The series on RHS is convergent as $\left|r_{2} / \rho_{2}\right|<1$ and is independent of z hence it is easy to see that the convergence is uniform in the region.

By uniform convergence (it is also uniform in $\zeta \in C_{\rho_{2}}$), we may swap the sum and integral:

$$
\frac{1}{2 \pi i} \oint_{C_{r_{2}}} \frac{f(\zeta)}{\zeta-z} d \zeta=\sum_{n=0}^{\infty}\left(\frac{1}{2 \pi i} \oint_{C_{r_{2}}} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}} d \zeta\right)\left(z-z_{0}\right)^{n}
$$

In the same fashion, suppose $\left|z-z_{0}\right| \geq r_{1}, \zeta \in C_{\rho_{1}}$ then

$$
\frac{f(\zeta)}{\zeta-z}=\frac{f(\zeta)}{\left(\zeta-z_{0}\right)-\left(z-z_{0}\right)}=-\frac{f(\zeta)}{\left(z-z_{0}\right)\left(1-\frac{\zeta-z_{0}}{z-z_{0}}\right)}=-\frac{f(\zeta)}{z-z_{0}} \sum_{n=0}^{\infty}\left(\frac{\zeta-z_{0}}{z-z_{0}}\right)^{n}
$$

For all such z, we have

$$
\left|\frac{f(\zeta)}{z-z_{0}} \sum_{n=0}^{\infty}\left(\frac{\zeta-z_{0}}{z-z_{0}}\right)^{n}\right| \leq \frac{M}{r_{1}} \sum_{n=0}^{\infty}\left(\frac{\rho_{1}}{r_{1}}\right)^{n}
$$

the series on RHS is convergent as $\left|\rho_{1} / r_{1}\right|<1$ as is independent of z hence the series is uniformly convergent on $\left|z-z_{0}\right| \geq \rho_{1}$. Swapping the sum and the integral, one has

$$
\begin{aligned}
\oint_{C_{r_{1}}} \frac{f(\zeta)}{\zeta-z} d \zeta & =-\frac{1}{2 \pi i}\left(\sum_{n=0}^{\infty} \oint_{C_{r_{1}}} f(\zeta)\left(\zeta-z_{0}\right)^{n} d \zeta\right)\left(z-z_{0}\right)^{-(n+1)} \\
& =-\frac{1}{2 \pi i} \sum_{n=1}^{\infty}\left(\oint_{C_{r_{1}}} f(\zeta)\left(\zeta-z_{0}\right)^{n-1} d \zeta\right)\left(z-z_{0}\right)^{-n}
\end{aligned}
$$

By equation (1), we have

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i}\left[\oint_{C_{r_{2}}} \frac{f(\zeta)}{\zeta-z} d \zeta-\oint_{C_{r_{1}}} \frac{f(\zeta)}{\zeta-z} d \zeta\right] \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{2 \pi i} \oint_{C_{r_{2}}} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n-1}} d \zeta\right)\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty}\left(\frac{1}{2 \pi i} \oint_{C_{r_{1}}} f(\zeta)\left(\zeta-z_{0}\right)^{n-1} d \zeta\right)\left(z-z_{0}\right)^{-n} \\
& =\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
\end{aligned}
$$

where

$$
a_{n}= \begin{cases}\frac{1}{2 \pi i} \oint_{C_{r_{2}}} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}} d \zeta & \text { if } n \geq 0 \\ \frac{1}{2 \pi i} \oint_{C_{r_{1}}} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}} d \zeta & \text { if } n<0\end{cases}
$$

where the series converges uniformly on $\left\{z: r_{1} \leq|z| \leq r_{2}\right\} \subseteq \Omega$. Also we may obtain a more general formula from homotopy form of Cauchy's theorem. Two paths γ_{0}, γ_{1} with the same endpoints inside Ω is said to be homotopic if γ_{0} can be continuously deformed to γ_{1} with their endpoints keep fixed. Cauchy's theorem states that if f is holomorphic in Ω then

$$
\int_{\gamma_{0}} f(\zeta) d \zeta=\int_{\gamma_{1}} f(\zeta) d \zeta
$$

so we can write

$$
a_{n}=\frac{1}{2 \pi i} \oint_{\gamma} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}} d \zeta
$$

for any simple closed curve $\gamma \subseteq \Omega$, enclosing z_{0}.
2. (a) Determine whether the limit

$$
\lim _{R \rightarrow \infty} \int_{-R}^{R} e^{i x^{2}} d x
$$

exists. If yes, find its value. If not, justify why not.

Proof. Consider the positively oriented closed contour $\Gamma(R)$ consisting of the three curves

$$
\begin{aligned}
& \Gamma_{1}(R):=[0, R], \quad \Gamma_{2}(R):=\left\{R e^{i \theta}: 0 \leq \theta \leq \frac{\pi}{4}\right\} \\
& \Gamma_{3}(R):=\left\{t e^{i \frac{\pi}{4}}: 0 \leq t \leq R\right\}
\end{aligned}
$$

Since the function $f(z)=e^{i z^{2}}$ is entire, Cauchy's theorem gives

$$
\begin{gathered}
\quad \oint_{\Gamma_{R}} f(z) d z=0 \\
\text { or, } \\
I_{1}(R)+I_{2}(R)+I_{3}(R)=0 \quad \text { for every } R .
\end{gathered}
$$

Here $I_{j}(R)$ denotes the integral of f over $\Gamma_{j}(R)$ with orientation consistent with Γ. We observe that

$$
\begin{aligned}
I_{3}(R) & =-\int_{0}^{R} e^{i t^{2} e^{i \frac{\pi}{2}}} e^{i \frac{\pi}{4}} d t=-\frac{1+i}{\sqrt{2}} \int_{0}^{R} e^{-t^{2}} d t \\
& \rightarrow-\frac{1+i}{\sqrt{2}} \int_{0}^{\infty} e^{-t^{2}} d t=-\frac{(1+i)}{\sqrt{2}} \cdot \frac{\sqrt{\pi}}{2}, \quad \text { as } R \rightarrow \infty, \text { whereas } \\
\left|I_{2}(R)\right| & =\left|\int_{0}^{\frac{\pi}{4}} e^{i R^{2} e^{2 i \theta}} i R e^{i \theta} d \theta\right| \leq \int_{0}^{\frac{\pi}{4}} e^{-R^{2} \sin (2 \theta)} R d \theta \\
& \leq R \int_{0}^{\frac{\pi}{4}} e^{-c R^{2} \theta} d \theta \leq \frac{1-e^{-d R^{2}}}{c R} \leq \frac{2}{c R} \rightarrow 0
\end{aligned}
$$

Here c and d are fixed positive constants. Inserting these estimates into (2), we obtain that

$$
\lim _{R \rightarrow \infty} \int_{-R}^{R} e^{i x^{2}} d x=2 \lim _{R \rightarrow \infty} I_{1}(R)=\frac{\sqrt{\pi}(1+i)}{\sqrt{2}}
$$

(b) By integrating a branch of $\log z /\left(z^{3}-1\right)$ around the boundary of an indented sector of aperture $\frac{2 \pi}{3}$, show that

$$
\int_{0}^{\infty} \frac{\log x}{x^{3}-1} d x=\frac{4 \pi^{2}}{27}
$$

Proof. We choose the contour $\Gamma(\epsilon, R)$ to be a positively oriented closed curve, consisting of the following pieces:

$$
\begin{aligned}
\Gamma_{1}(R) & =[0, R], \quad \Gamma_{2}(R)=\left\{R e^{i \theta}: 0 \leq \theta \leq \frac{2 \pi}{3}\right\}, \\
\Gamma_{3}(\epsilon, R) & =\left\{t e^{\frac{2 \pi i}{3}}: t \in[\epsilon, 1-\epsilon] \cup[1+\epsilon, R]\right\}, \\
\Gamma_{4}(\epsilon) & =\left\{e^{\frac{2 \pi i}{3}}+\epsilon e^{i \theta}:-\frac{\pi}{3} \leq \theta \leq \frac{2 \pi}{3}\right\}, \\
\Gamma_{5}(\epsilon) & =\left\{\epsilon e^{i \theta}: 0 \leq \theta \leq \frac{2 \pi}{3}\right\} .
\end{aligned}
$$

Define a complex branch of the logarithm on $\mathbb{C} \backslash(-\infty, 0]$, and note that for every $0<\epsilon \ll 1 \ll R$, the function $f(z)=\log z /\left(z^{3}-1\right)$ is holomorphic on an open set containing $\Gamma(\epsilon, R)$ and its interior. In particular, observe that $z=1$ is a removable singularity for f, and that the only pole of f that $\Gamma(\epsilon, R)$ approaches arbitrarily closely is $z=e^{\frac{2 \pi i}{3}}$. Since $\Gamma(\epsilon, R)$ is homotopic to zero, Cauchy's theorem implies that

$$
\begin{equation*}
\oint_{\Gamma(\epsilon, R)} f(z) d z=0 . \tag{3}
\end{equation*}
$$

We will show below that

$$
\lim _{R \rightarrow \infty} \int_{\Gamma_{2}(R)} f(z) d z=0, \quad \lim _{\epsilon \rightarrow \infty} \int_{\Gamma_{5}(\epsilon)} f(z) d z=0
$$

On the other hand, it is easy to verify that

$$
\begin{align*}
& \lim _{\substack{\epsilon \rightarrow 0 \\
R \rightarrow \infty}} \oint_{\Gamma_{3}(\epsilon, R)} f(z) d z=-e^{\frac{2 \pi i}{3}} \int_{0}^{\infty} \frac{\log x+\frac{2 \pi i}{3}}{x^{3}-1} d x \tag{5}\\
& \lim _{\epsilon \rightarrow 0} \oint_{\Gamma_{4}(\epsilon)}=-\pi i \operatorname{Res}\left(f ; e^{\frac{2 \pi i}{3}}\right)=\frac{\pi^{2}}{9} e^{-\frac{2 \pi i}{3}}(1+i \sqrt{3}) . \tag{6}
\end{align*}
$$

Assuming these for the moment, the evaluation of the integral is completed as follows. Let I denote the integral to the determined, and let J be the principal value integral given by

$$
J=\lim _{\epsilon \rightarrow 0} \int_{\substack{x \in(0, \infty) \\|x-1|>\epsilon}} \frac{d x}{x^{3}-1} d x
$$

. Letting $R \rightarrow \infty$ and $\epsilon \rightarrow 0$ in (3), and using (4), (5) and (6), we obtain that

$$
I+0-e^{\frac{2 \pi i}{3}}\left(I+\frac{2 \pi i}{3} J\right)+\frac{\pi^{2}}{9} e^{-\frac{2 \pi i}{3}}(1+i \sqrt{3})=0
$$

Multiplying both sides of the equation above by $e^{\frac{2 \pi i}{3}}$, and then equating real parts of both sides, we obtain that $\frac{3}{2} I=2 \frac{\pi^{2}}{9}$, or $I=\frac{4 \pi^{2}}{27}$.
Proof of (4). It remains to prove (4). We estimate both integrals by parametrizing the respective curves.

$$
\begin{aligned}
\left|\oint_{\Gamma_{2}(R)} f(z) d z\right| & \leq\left|\int_{0}^{\frac{2 \pi}{3}} \frac{\log \left(R e^{i \theta)}\right.}{R^{3} e^{3 i \theta}-1} R i e^{i \theta} d \theta\right| \\
& \leq C \frac{R \log R}{R^{3}-1} \rightarrow 0 \text { as } R \rightarrow \infty \\
\left|\oint_{\Gamma_{2}(\epsilon)} f(z) d z\right| & \leq\left|\int_{0}^{\frac{2 \pi}{3}} \frac{\log \left(\epsilon e^{i \theta)}\right.}{\epsilon^{3} e^{3 i \theta}-1} \epsilon i e^{i \theta} d \theta\right| \\
& \leq C \frac{\epsilon|\log \epsilon|}{1-\epsilon^{3}} \rightarrow 0 \text { as } \epsilon \rightarrow 0
\end{aligned}
$$

3. Justify the following statements.

(a) If m and n are positive integers, then the polynomial

$$
p(z)=1+z+\frac{z^{2}}{2!}+\cdots+\frac{z^{m}}{m!}+3 z^{n}
$$

has exactly n zeros inside the unit disc, counting multiplicities.
Proof. Let $p(z)=1+z+\frac{z^{2}}{2!}+\cdots+\frac{z^{m}}{m!}+3 z^{n}$ then on $\{z ;|z|=1\}$ we have

$$
\left|p(z)+\left(-3 z^{n}\right)\right|=\left|1+z+\cdots \frac{z^{m}}{m!}\right| \leq \sum_{n=0}^{\infty} \frac{|z|^{m}}{m!} \leq e^{|z|}<3
$$

Hence for $|z|=1,\left|p(z)+\left(-3 z^{n}\right)\right|<3 \leq|p(z)|+\left|-3 z^{n}\right|$. By Rouche's Theorem, $p(z)$ and $-3 z^{n}$ have the same number of zeros in $\{z:|z|<1\}$ and it is easy to see that $-3 z^{n}$ has n roots (counted with multiplicities) with $|z|<1$, the same is true for $p(z)$. Note: You can't compare two complex numbers, just their absolute values.
(b) For any $\lambda \in \mathbb{C}$ with $|\lambda|<1$ and for $n \geq 1$, the function $(z-1)^{n} e^{z}-\lambda$ has n zeros satisfying $|z-1|<1$ and no other zeros in the right half plane.

Proof. Let $f(z)=(z-1)^{n} e^{z}-\lambda,|\lambda|<1$ and $g(z)=-(z-1)^{n} e^{z}$. Let $\Omega=\{z:|z-1|<1\}$ On $\partial \Omega$ we have $\Re(z)>0$ and $f(z) \neq 0$. Hence

$$
|f(z)+g(z)|=|\lambda|<1 \leq\left|-(z-1)^{n} e^{z}=|g(z)|<|f(z)|+|g(z)|\right.
$$

By Rouche's Theorem, f, g have the same number of zeros inside Ω. Since e^{z} has no zeros , it is easy to see that g has n zeros (counted with multiplicities) inside Ω and hence the same is true for f.

On $\{\Re(z)>0\} \cap\{|z-1|>1\}$, we have $\left|(z-1)^{n} e^{z}\right|=|z-1|^{n} e^{\Re(z)} \geq 1 e^{0}>|\lambda|$ hence no other zeros on the right half plane.
4. Let f be analytic in the punctured disc $G=B(a ; R) \backslash\{a\}$.
(a) Show that if

$$
\iint_{G}|f(x+i y)|^{2} d y d x<\infty
$$

then f has a removable singularity at $z=a$.
(b) Suppose that $p>0$ and

$$
\iint_{G}|f(x+i y)|^{p} d y d x<\infty
$$

What can you conclude about the nature of singularity of f at $z=a$?
Proof. WLOG, assume $a=0$. Suppose f has a pole of order n at 0 then $f(z)=\frac{g(z)}{z^{n}}$ for some g holomorphic on $B(0, R), g(0) \neq 0$. For $\epsilon>0$ small enough we have $C_{2}>$ $|g(z)|>C_{1}>0$ on $B(0, \epsilon)$ for some C_{1}, C_{2}. Now using polar coordinate,

$$
\begin{aligned}
\iint_{B(0, \epsilon) \backslash\{0\}}\left|\frac{g(x, y)}{z^{n}}\right|^{p} d x d y<\infty & \Longleftrightarrow \iint_{B(0, \epsilon) \backslash\{0\}} \frac{1}{|z|^{n p}} d x d y<\infty \\
& \Longleftrightarrow \int_{0}^{2 \pi} \int_{0}^{\epsilon} r^{-n p} r d r d \theta<\infty \\
& \Longleftrightarrow-n p+1>-1 \Longleftrightarrow p<\frac{2}{n}
\end{aligned}
$$

Hence f has a pole of order n which is the biggest positive integer that is less than $2 / p$.
If f has a essential singularity at 0 then by considering its Laurent's Series, we may find a sequence of functions g_{N} which has a pole of order N at 0 and $g_{N} \rightarrow f$ uniformly on $\delta \leq|z| \leq \epsilon$ for any $\delta>0$. Hence as $N \rightarrow \infty$

$$
\int_{\delta \leq|z| \leq \epsilon}\left|g_{N}\right|^{p} \rightarrow \int_{\delta \leq|z| \leq \epsilon}|f|^{p}
$$

But when N is large enough so that $p \geq \frac{2}{N}$ then

$$
\limsup _{M \rightarrow \infty} \int_{\frac{1}{M} \leq|z| \leq \epsilon}\left|g_{N}\right|^{p}=\infty
$$

This would imply

$$
\limsup _{M \rightarrow \infty} \int_{\frac{1}{M} \leq|z| \leq \epsilon}|f|^{p}=\infty
$$

so f cannot have essential singularity at 0 . In particular if $p=2$, we must have a removable singularity there. We conclude that the integral of $|f|^{p}$ on G cannot converge for any $p>0$ if f has an essential singularity at a.
Note: We may not have uniform convergence $B(0, R) \backslash\{0\}$ so we may not directly interchange the limit and the integral directly on this domain.
5. Determine whether each of the following statements is true or false. Provide a proof or a counterexample, as appropriate, in support of your answer.
(a) There exists a function f that is meromorphic on \mathbb{C}_{∞} such that

$$
\sum_{\substack{a \in \mathbb{C}_{\infty} \\ \text { pole of } f}} \operatorname{Res}(f ; a) \neq 0
$$

Here $\operatorname{Res}(f ; a)$ denotes the residue of f at a. (Hint: By definition, $\operatorname{Res}(f ; \infty)=$ $\operatorname{Res}(\tilde{f} ; 0)$, where $\tilde{f}(z)=-\frac{1}{z^{2}} f\left(\frac{1}{z}\right)$.)

Proof. The statement is false. By the residue theorem and a change of variable $w=$ $1 / z$, we see that for any meromorphic function f on \mathbb{C}_{∞} and a constant $R>0$ sufficiently large,

$$
\operatorname{Res}(f, \infty)=-\oint_{|z|=R^{-1}} \frac{1}{z^{2}} f\left(\frac{1}{z}\right) d z=-\oint_{|w|=R} f(w) d w=-\sum_{\substack{a \in \mathbb{C} \\ a \text { pole of } f}} \operatorname{Res}(f, a)
$$

Hence the sum of the residues of a meromorphic function on the extended complex plane is always zero.
(b) The number of zeros of a meromorphic function in \mathbb{C}_{∞} is the same as the number of poles, both counted with multiplicity.

Proof. The statement is true. A meromorphic function in \mathbb{C}_{∞} is a rational function P / Q, where P and Q are polynomials with no common root. Let m and n denote the degrees of P and Q respectively. Then P / Q has exactly m zeros and n poles in \mathbb{C}, counting multiplicities. If $m=n$, these account for all zeros and poles of P / Q in \mathbb{C}_{∞}, and the statement has been verified. If $m<n$, then P / Q has a zero of multiplicity
$n-m$ at ∞, whereas if $m>n$, then P / Q has a pole of order $m-n$ at ∞. Thus the total number of zeros in \mathbb{C}_{∞} matches the total number of poles in all cases.
(c) For any two polynomials P and Q such that $\operatorname{deg}(P) \leq \operatorname{deg}(Q)-2$, and Q only has simple roots, the following identity holds:

$$
\sum_{a: \mathbf{Q}(\mathbf{a})=0} \frac{\mathbf{P}(\mathbf{a})}{\mathbf{Q}^{\prime}(\mathbf{a})}=0
$$

Proof. The statement is true. Since Q has only finitely many zeros, choose $R>0$ large enough so that $B(0 ; R)$ contains all the roots of Q. Further these roots are simple, hence the rational function P / Q has at most simple poles, located at the roots of Q. By the residue theorem,

$$
\begin{equation*}
\frac{1}{2 \pi i} \oint_{|z|=R} \frac{P(z)}{Q(z)} d z=\sum_{a: Q(a)=0} \operatorname{Res}(a ; P / Q) \tag{7}
\end{equation*}
$$

On one hand, if a is a root of Q, then

$$
\begin{equation*}
\operatorname{Res}(a ; P / Q)=\lim _{z \rightarrow a}(z-a) \frac{P(z)}{Q(z)}=\lim _{z \rightarrow a} \frac{P(z)}{\frac{Q(z)-Q(a)}{z-a}}=\lim _{z \rightarrow a} \frac{P(a)}{Q^{\prime}(a)} \tag{8}
\end{equation*}
$$

On the other hand, the assumption $\operatorname{deg}(P) \leq \operatorname{deg}(Q)-2$ implies that

$$
\begin{equation*}
\int_{|z|=R} \frac{P(z)}{Q(z)} d z \leq C R^{\operatorname{deg}(P)-\operatorname{deg}(Q)+1} \rightarrow 0 \text { as } R \rightarrow \infty \tag{9}
\end{equation*}
$$

Combining (7), (8) and (9) yields the desired claim.

