
Midterm Solutions - Math 440/508, Fall 2014

1. Let f be holomorphic in an open connected set containing the annulus {z ∈
C : r1 ≤ |z − z0| ≤ r2}, where 0 < r1 < r2.
(a) Use an appropriate contour to obtain an integral self-reproducing formula

analogous to the Cauchy integral formula for f(z) in terms of the values of
f on Cr1 and Cr2. Here Cr = {z ∈ C : |z − z0| = r}.

(b) Use the formula you obtained in part (a) to derive the Laurent series
expansion of f :

f(z) =
∞∑

n=−∞

an(z − z0)n,

and verify that it converges absolutely and uniformly on the annulus.

(c) Derive integral expressions for an in terms of f analogous to the derivative
forms of Cauchy integral formula.

Cr1

Cr2

z0

z

Proof. Let Cr1 , Cr2 denote the circle centered at z0 radius r1, r2 respectively with 0 < r1 <
r2. Since Cr1 , Cr2 is compact living in the open set Ω (i.e. disjoint from the closed set
ΩC) there is some δ− neighborhood of Cr1 , Cr2 that live inside Ω. Let ρ1, ρ2 be such that
0 < ρ1 < r1 < r2 < ρ2 and Cρ1 , Cρ2 ⊆ Ω. Let Sz be the boundary of the gray sector
depicted in the figure which does not contain z. Let Rz be the boundary of the remaining
white region. Here all integrals over closed curve are taken counterclockwise which we
denote by

�
.

Let g(ζ) = f(ζ)
ζ−z . Hence by Cauchy’s theorem,

‰
Sz

g(ζ)dζ = 0,

‰
Rz

g(ζ)dζ = 2πif(z)

1



2

Here our integrals are taken in anticlockwise direction. Hence

(1) f(z) =
1

2πi

[‰
SZ

g(ζ)dζ +

‰
RZ

g(ζ)dζ

]
=

1

2πi

[‰
Cr2

f(ζ)

ζ − z
dζ −

‰
Cr1

f(ζ)

ζ − z
dζ

]
Note that |f(ζ)| ≤M for some M > 0 on Cρ2 or Cρ1 which are compact. Now if ζ ∈ Cρ2
and |z − z0| ≤ r2 then | z−z0

ζ−z0 | < 1 hence

f(ζ)

ζ − z
=

f(ζ)

(ζ − z0)− (z − z0)
=

f(ζ)

(ζ − z0)(1− z−z0
ζ−z0 )

=
f(ζ)

ζ − z0

∞∑
n=0

(
z − z0

ζ − z0

)n
We claim that f(ζ)

ζ−z0

∑∞
n=0

(
z−z0
ζ−z0

)n
converges uniformly on {z : |z− z0| ≤ r2}. To see this,if

|z − z0| ≤ r2 we have ∣∣∣∣ f(ζ)

ζ − z0

∞∑
n=0

(
z − z0

ζ − z0

)n∣∣∣∣ ≤ M

r2

∞∑
n=0

∣∣∣∣r2

ρ2

∣∣∣∣n
The series on RHS is convergent as |r2/ρ2| < 1 and is independent of z hence it is easy to
see that the convergence is uniform in the region.

By uniform convergence (it is also uniform in ζ ∈ Cρ2), we may swap the sum and
integral:

1

2πi

‰
Cr2

f(ζ)

ζ − z
dζ =

∞∑
n=0

(
1

2πi

‰
Cr2

f(ζ)

(ζ − z0)n+1
dζ

)
(z − z0)n

In the same fashion, suppose |z − z0| ≥ r1, ζ ∈ Cρ1 then

f(ζ)

ζ − z
=

f(ζ)

(ζ − z0)− (z − z0)
= − f(ζ)

(z − z0)(1− ζ−z0
z−z0 )

= − f(ζ)

z − z0

∞∑
n=0

(
ζ − z0

z − z0

)n
For all such z, we have∣∣∣∣ f(ζ)

z − z0

∞∑
n=0

(
ζ − z0

z − z0

)n∣∣∣∣ ≤ M

r1

∞∑
n=0

(
ρ1

r1

)n
the series on RHS is convergent as |ρ1/r1| < 1 as is independent of z hence the series is
uniformly convergent on |z − z0| ≥ ρ1. Swapping the sum and the integral, one has

‰
Cr1

f(ζ)

ζ − z
dζ = − 1

2πi

( ∞∑
n=0

‰
Cr1

f(ζ)(ζ − z0)ndζ

)
(z − z0)−(n+1)

= − 1

2πi

∞∑
n=1

( ‰
Cr1

f(ζ)(ζ − z0)n−1dζ

)
(z − z0)−n
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By equation (1), we have

f(z) =
1

2πi

[‰
Cr2

f(ζ)

ζ − z
dζ −

‰
Cr1

f(ζ)

ζ − z
dζ

]
=
∞∑
n=0

(
1

2πi

‰
Cr2

f(ζ)

(ζ − z0)n−1
dζ

)
(z − z0)n +

∞∑
n=1

(
1

2πi

‰
Cr1

f(ζ)(ζ − z0)n−1dζ

)
(z − z0)−n

=
∞∑

n=−∞

an(z − z0)n

where

an =

{
1

2πi

�
Cr2

f(ζ)
(ζ−z0)n+1dζ if n ≥ 0

1
2πi

�
Cr1

f(ζ)
(ζ−z0)n+1dζ if n < 0.

where the series converges uniformly on {z : r1 ≤ |z| ≤ r2} ⊆ Ω. Also we may obtain a
more general formula from homotopy form of Cauchy’s theorem. Two paths γ0, γ1 with
the same endpoints inside Ω is said to be homotopic if γ0 can be continuously deformed
to γ1 with their endpoints keep fixed. Cauchy’s theorem states that if f is holomorphic
in Ω then ˆ

γ0

f(ζ)dζ =

ˆ
γ1

f(ζ)dζ

so we can write

an =
1

2πi

‰
γ

f(ζ)

(ζ − z0)n+1
dζ

for any simple closed curve γ ⊆ Ω, enclosing z0.
�

2. (a) Determine whether the limit

lim
R→∞

ˆ R

−R
eix

2

dx

exists. If yes, find its value. If not, justify why not.

π
4

R
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Proof. Consider the positively oriented closed contour Γ(R) consisting of the three
curves

Γ1(R) := [0, R], Γ2(R) := {Reiθ : 0 ≤ θ ≤ π

4
},

Γ3(R) := {tei
π
4 : 0 ≤ t ≤ R},

Since the function f(z) = eiz
2

is entire, Cauchy’s theorem gives

˛
ΓR

f(z) dz = 0,

or, I1(R) + I2(R) + I3(R) = 0 for every R.(2)

Here Ij(R) denotes the integral of f over Γj(R) with orientation consistent with Γ.
We observe that

I3(R) = −
ˆ R

0

eit
2ei

π
2 ei

π
4 dt = −1 + i√

2

ˆ R

0

e−t
2

dt

→ −1 + i√
2

ˆ ∞
0

e−t
2

dt = −(1 + i)√
2
·
√
π

2
, as R→∞, whereas

|I2(R)| =
∣∣∣ˆ π

4

0

eiR
2e2iθiReiθ dθ

∣∣∣ ≤ ˆ π
4

0

e−R
2 sin(2θ)Rdθ

≤ R

ˆ π
4

0

e−cR
2θ dθ ≤ 1− e−dR2

cR
≤ 2

cR
→ 0.

Here c and d are fixed positive constants. Inserting these estimates into (2), we obtain
that

lim
R→∞

ˆ R

−R
eix

2

dx = 2 lim
R→∞

I1(R) =

√
π(1 + i)√

2
.

�

(b) By integrating a branch of log z/(z3−1) around the boundary of an indented
sector of aperture 2π

3
, show that

ˆ ∞
0

log x

x3 − 1
dx =

4π2

27
.
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R
ε

Proof. We choose the contour Γ(ε, R) to be a positively oriented closed curve, consist-
ing of the following pieces:

Γ1(R) = [0, R], Γ2(R) = {Reiθ : 0 ≤ θ ≤ 2π

3
},

Γ3(ε, R) = {te
2πi
3 : t ∈ [ε, 1− ε] ∪ [1 + ε, R]},

Γ4(ε) = {e
2πi
3 + εeiθ : −π

3
≤ θ ≤ 2π

3
},

Γ5(ε) = {εeiθ : 0 ≤ θ ≤ 2π

3
}.

Define a complex branch of the logarithm on C \ (−∞, 0], and note that for every
0 < ε � 1 � R, the function f(z) = log z/(z3 − 1) is holomorphic on an open set
containing Γ(ε, R) and its interior. In particular, observe that z = 1 is a removable
singularity for f , and that the only pole of f that Γ(ε, R) approaches arbitrarily closely

is z = e
2πi
3 . Since Γ(ε, R) is homotopic to zero, Cauchy’s theorem implies that

(3)

˛
Γ(ε,R)

f(z) dz = 0.

We will show below that

(4) lim
R→∞

ˆ
Γ2(R)

f(z) dz = 0, lim
ε→∞

ˆ
Γ5(ε)

f(z) dz = 0,

On the other hand, it is easy to verify that

lim
ε→0
R→∞

˛
Γ3(ε,R)

f(z) dz = −e
2πi
3

ˆ ∞
0

log x+ 2πi
3

x3 − 1
dx,(5)

lim
ε→0

˛
Γ4(ε)

= −πiRes(f ; e
2πi
3 ) =

π2

9
e−

2πi
3 (1 + i

√
3).(6)
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Assuming these for the moment, the evaluation of the integral is completed as follows.
Let I denote the integral to the determined, and let J be the principal value integral
given by

J = lim
ε→0

ˆ
x∈(0,∞)
|x−1|>ε

dx

x3 − 1
dx.

. Letting R→∞ and ε→ 0 in (3), and using (4), (5) and (6), we obtain that

I + 0− e
2πi
3 (I +

2πi

3
J) +

π2

9
e−

2πi
3 (1 + i

√
3) = 0.

Multiplying both sides of the equation above by e
2πi
3 , and then equating real parts of

both sides, we obtain that 3
2
I = 2π

2

9
, or I = 4π2

27
. �

Proof of (4). It remains to prove (4). We estimate both integrals by parametrizing
the respective curves.∣∣∣∣˛

Γ2(R)

f(z) dz

∣∣∣∣ ≤
∣∣∣∣∣
ˆ 2π

3

0

log(Reiθ)

R3e3iθ − 1
Rieiθ dθ

∣∣∣∣∣
≤ C

R logR

R3 − 1
→ 0 as R→∞.∣∣∣∣˛

Γ2(ε)

f(z) dz

∣∣∣∣ ≤
∣∣∣∣∣
ˆ 2π

3

0

log(εeiθ)

ε3e3iθ − 1
εieiθ dθ

∣∣∣∣∣
≤ C

ε| log ε|
1− ε3

→ 0 as ε→ 0.

�

3. Justify the following statements.
(a) If m and n are positive integers, then the polynomial

p(z) = 1 + z +
z2

2!
+ · · ·+ zm

m!
+ 3zn

has exactly n zeros inside the unit disc, counting multiplicities.

Proof. Let p(z) = 1 + z + z2

2!
+ · · ·+ zm

m!
+ 3zn then on {z; |z| = 1} we have

|p(z) + (−3zn)| =
∣∣∣∣1 + z + · · · z

m

m!

∣∣∣∣ ≤ ∞∑
n=0

|z|m

m!
≤ e|z| < 3

Hence for |z| = 1, |p(z) + (−3zn)| < 3 ≤ |p(z)|+ | − 3zn|. By Rouche’s Theorem, p(z)
and −3zn have the same number of zeros in {z : |z| < 1} and it is easy to see that
−3zn has n roots (counted with multiplicities) with |z| < 1, the same is true for p(z).
Note: You can’t compare two complex numbers, just their absolute values. �
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(b) For any λ ∈ C with |λ| < 1 and for n ≥ 1, the function (z − 1)nez − λ has n
zeros satisfying |z − 1| < 1 and no other zeros in the right half plane.

Proof. Let f(z) = (z−1)nez−λ, |λ| < 1 and g(z) = −(z−1)nez. Let Ω = {z : |z−1| < 1}
On ∂Ω we have <(z) > 0 and f(z) 6= 0. Hence

|f(z) + g(z)| = |λ| < 1 ≤ | − (z − 1)nez = |g(z)| < |f(z)|+ |g(z)|
By Rouche’s Theorem, f, g have the same number of zeros inside Ω. Since ez has no zeros
, it is easy to see that g has n zeros (counted with multiplicities) inside Ω and hence the
same is true for f .

On {<(z) > 0} ∩ {|z − 1| > 1}, we have |(z − 1)nez| = |z − 1|ne<(z) ≥ 1e0 > |λ| hence
no other zeros on the right half plane. �

4. Let f be analytic in the punctured disc G = B(a;R) \ {a}.
(a) Show that if ¨

G

|f(x+ iy)|2 dy dx <∞,

then f has a removable singularity at z = a.

(b) Suppose that p > 0 and¨
G

|f(x+ iy)|p dy dx <∞.

What can you conclude about the nature of singularity of f at z = a?

Proof. WLOG, assume a = 0. Suppose f has a pole of order n at 0 then f(z) = g(z)
zn

for some g holomorphic on B(0, R), g(0) 6= 0. For ε > 0 small enough we have C2 >
|g(z)| > C1 > 0 on B(0, ε) for some C1, C2. Now using polar coordinate,ˆ ˆ

B(0,ε)\{0}

∣∣g(x, y)

zn
∣∣pdxdy <∞⇐⇒ ˆ ˆ

B(0,ε)\{0}

1

|z|np
dxdy <∞

⇐⇒
ˆ 2π

0

ˆ ε

0

r−nprdrdθ <∞

⇐⇒ −np+ 1 > −1⇐⇒ p <
2

n
Hence f has a pole of order n which is the biggest positive integer that is less than
2/p.
If f has a essential singularity at 0 then by considering its Laurent’s Series, we may
find a sequence of functions gN which has a pole of order N at 0 and gN → f uniformly
on δ ≤ |z| ≤ ε for any δ > 0. Hence as N →∞ˆ

δ≤|z|≤ε
|gN |p →

ˆ
δ≤|z|≤ε

|f |p
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But when N is large enough so that p ≥ 2
N

then

lim sup
M→∞

ˆ
1
M
≤|z|≤ε

|gN |p =∞

This would imply

lim sup
M→∞

ˆ
1
M
≤|z|≤ε

|f |p =∞

�

so f cannot have essential singularity at 0. In particular if p = 2, we must have
a removable singularity there. We conclude that the integral of |f |p on G cannot
converge for any p > 0 if f has an essential singularity at a.
Note: We may not have uniform convergence B(0, R)\{0} so we may not directly
interchange the limit and the integral directly on this domain.

5. Determine whether each of the following statements is true or false. Provide
a proof or a counterexample, as appropriate, in support of your answer.
(a) There exists a function f that is meromorphic on C∞ such that∑

a∈C∞
pole of f

Res(f ; a) 6= 0.

Here Res(f ; a) denotes the residue of f at a. (Hint: By definition, Res(f ;∞) =

Res(f̃ ; 0), where f̃(z) = − 1
z2
f(1

z
).)

Proof. The statement is false. By the residue theorem and a change of variable w =
1/z, we see that for any meromorphic function f on C∞ and a constant R > 0
sufficiently large,

Res(f,∞) = −
˛
|z|=R−1

1

z2
f
(1

z

)
dz = −

˛
|w|=R

f(w) dw = −
∑
a∈C

a pole of f

Res(f, a).

Hence the sum of the residues of a meromorphic function on the extended complex
plane is always zero. �

(b) The number of zeros of a meromorphic function in C∞ is the same as the
number of poles, both counted with multiplicity.

Proof. The statement is true. A meromorphic function in C∞ is a rational function
P/Q, where P and Q are polynomials with no common root. Let m and n denote the
degrees of P and Q respectively. Then P/Q has exactly m zeros and n poles in C,
counting multiplicities. If m = n, these account for all zeros and poles of P/Q in C∞,
and the statement has been verified. If m < n, then P/Q has a zero of multiplicity
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n−m at ∞, whereas if m > n, then P/Q has a pole of order m− n at ∞. Thus the
total number of zeros in C∞ matches the total number of poles in all cases. �

(c) For any two polynomials P and Q such that deg(P ) ≤ deg(Q) − 2, and Q
only has simple roots, the following identity holds:∑

a:Q(a)=0

P(a)

Q′(a)
= 0.

Proof. The statement is true. Since Q has only finitely many zeros, choose R > 0
large enough so that B(0;R)contains all the roots of Q. Further these roots are simple,
hence the rational function P/Q has at most simple poles, located at the roots of Q.
By the residue theorem,

(7)
1

2πi

˛
|z|=R

P (z)

Q(z)
dz =

∑
a:Q(a)=0

Res(a;P/Q).

On one hand, if a is a root of Q, then

(8) Res(a;P/Q) = lim
z→a

(z − a)
P (z)

Q(z)
= lim

z→a

P (z)
Q(z)−Q(a)

z−a

= lim
z→a

P (a)

Q′(a)
.

On the other hand, the assumption deg(P ) ≤ deg(Q)− 2 implies that

(9)

ˆ
|z|=R

P (z)

Q(z)
dz ≤ CRdeg(P )−deg(Q)+1 → 0 as R→∞.

Combining (7), (8) and (9) yields the desired claim. �


