Take-home Midterm - Math 440/508, Fall 2014

Due Friday October 24 at the beginning of lecture.

Instructions: Your work will be graded both on mathematical correctness and quality of exposition. Please pay attention to the presentation of your solutions.

1. Let f be holomorphic in an open connected set containing the annulus $\left\{z \in \mathbb{C}: r_{1} \leq\right.$ $\left.\left|z-z_{0}\right| \leq r_{2}\right\}$, where $0<r_{1}<r_{2}$.
(a) Use an appropriate contour to obtain an integral self-reproducing formula analogous to the Cauchy integral formula for $f(z)$ in terms of the values of f on $C_{r_{1}}$ and $C_{r_{2}}$. Here $C_{r}=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=r\right\}$.
(b) Use the formula you obtained in part (a) to derive the Laurent series expansion of f :

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n},
$$

and verify that it converges absolutely and uniformly on the annulus.
(c) Derive integral expressions for a_{n} in terms of f analogous to the derivative forms of Cauchy integral formula.
2. (a) Determine whether the limit

$$
\lim _{R \rightarrow \infty} \int_{-R}^{R} e^{i x^{2}} d x
$$

exists. If yes, find its value. If not, justify why not.
(b) By integrating a branch of $\log z /\left(z^{3}-1\right)$ around the boundary of an indented sector of aperture $\frac{2 \pi}{3}$, show that

$$
\int_{0}^{\infty} \frac{\log x}{x^{3}-1} d x=\frac{4 \pi^{2}}{27}
$$

3. Justify the following statements.
(a) If m and n are positive integers, then the polynomial

$$
p(z)=1+z+\frac{z^{2}}{2!}+\cdots+\frac{z^{m}}{m!}+3 z^{n}
$$

has exactly n zeros inside the unit disc, counting multiplicities.
(b) For any $\lambda \in \mathbb{C}$ with $|\lambda|<1$ and for $n \geq 1$, the function $(z-1)^{n} e^{z}-\lambda$ has n zeros satisfying $|z-1|<1$ and no other zeros in the right half plane.
4. Let f be analytic in the punctured disc $G=B(a ; R) \backslash\{a\}$.
(a) Show that if

$$
\iint_{G}|f(x+i y)|^{2} d y d x<\infty
$$

then f has a removable singularity at $z=a$.
(b) Suppose that $p>0$ and

$$
\iint_{G}|f(x+i y)|^{p} d y d x<\infty
$$

What can you conclude about the nature of singularity of f at $z=a$?
5. Determine whether each of the following statements is true or false. Provide a proof or a counterexample, as appropriate, in support of your answer.
(a) There exists a function f that is meromorphic on \mathbb{C}_{∞} such that

$$
\sum_{\substack{a \in \mathbb{C}_{\infty} \\ \text { pole of } f}} \operatorname{Res}(f ; a) \neq 0
$$

Here $\operatorname{Res}(f ; a)$ denotes the residue of f at a. (Hint: By definition, $\operatorname{Res}(f ; \infty)=$ $\operatorname{Res}(\tilde{f} ; 0)$, where $\tilde{f}(z)=-\frac{1}{z^{2}} f\left(\frac{1}{z}\right)$.)
(b) The number of zeros and poles of a meromorphic function in \mathbb{C}_{∞} is the same, counted as always with multiplicity.
(c) For any two polynomials P and Q such that $\operatorname{deg}(P) \leq \operatorname{deg}(Q)-2$, and Q only has simple roots, the following identity holds:

$$
\sum_{a: Q(a)=0} \frac{P(a)}{Q^{\prime}(a)}=0
$$

