Homework 1 - Math 440/508, Fall 2014

Due Friday September 19 at the beginning of lecture.

Instructions: Your homework will be graded both on mathematical correctness and quality of exposition. Please pay attention to the presentation of your solutions.

- 1. In each of the two problems below, \mathcal{F}_i is a class of entire functions. Characterize all functions that lie in \mathcal{F}_i .
 - (a) The collection \mathcal{F}_1 consists of all functions f such that the power series expansion of f about every point in \mathbb{C} has at least one vanishing coefficient.
 - (b) The collection \mathcal{F}_2 consists of functions f obeying the inequality

 $|f(z)| \le A + B|z|^k \quad \text{for all } z \in \mathbb{C},$

where A, B and k are fixed positive numbers, possibly depending on f but independent of z.

- 2. If f is analytic on an open set D, show that $\nabla(\operatorname{Re}(f))$ is obtained by rotating $\nabla(\operatorname{Im}(f))$ by 90°. Here ∇ denotes the two-dimensional gradient vector.
- 3. Let f be an analytic function on a open connected set D. In each of the two problems below, show that f is constant.
 - (a) The function f is also analytic on D.
 - (b) |f| is constant on D.
- 4. Determine which of the following functions are analytic and at which points of D:
 - (a) $f(z) = \operatorname{Re}(z), D = \mathbb{C};$ (b) $f(z) = \operatorname{Im}(z), D = \mathbb{C};$ (c) $f(z) = az^2 + bz\overline{z} + c\overline{z}^2$, where a, b, c are constants, $D = \mathbb{C};$ (d) $f(z) = \sin x \sinh y + i \cos x \cosh y, D = \mathbb{C};$ (e)

$$H(z) = \int_0^1 \frac{h(t)}{t-z}, \qquad D = \mathbb{C} \setminus [0,1],$$

where h is a continuous, complex-valued function on [0, 1].

5. (a) If $\gamma : [0, 1] \to \mathbb{C}$ is a continuously differentiable closed curve and $a \notin \gamma[0, 1]$, then show that the function

$$n_{\gamma}(a) = \frac{1}{2\pi i} \oint_{\gamma} \frac{dz}{z-a}$$

is holomorphic on $\mathbb{C} \setminus \{\gamma\}$, which is in fact integer-valued everywhere in its domain of definition.

- (b) The quantity $n_{\gamma}(a)$ is called the *index* or *winding number* of γ with respect to the point a. Compute the winding number of $\gamma(t) = a + e^{2\pi i n t}$, $t \in [0, 1]$ with respect to a to convince yourself that the nomenclature is justified.
- (c) Give an example of a closed curve γ in \mathbb{C} of finite length such that for any integer k there is a point $a \notin \{\gamma\}$ with $n_{\gamma}(a) = k$.
- 6. For any $\epsilon > 0$, describe the set

$$A_{\epsilon} = \left\{ \omega : \omega = \exp\left(\frac{1}{z}\right), \quad 0 < |z| < \epsilon \right\},$$

and use it to deduce that A_{ϵ} is independent of ϵ .