Homework 1 - Math 440/508, Fall 2014

Due Friday September 19 at the beginning of lecture.

Instructions: Your homework will be graded both on mathematical correctness and quality of exposition. Please pay attention to the presentation of your solutions.

1. In each of the two problems below, \mathcal{F}_{i} is a class of entire functions. Characterize all functions that lie in \mathcal{F}_{i}.
(a) The collection \mathcal{F}_{1} consists of all functions f such that the power series expansion of f about every point in \mathbb{C} has at least one vanishing coefficient.
(b) The collection \mathcal{F}_{2} consists of functions f obeying the inequality

$$
|f(z)| \leq A+B|z|^{k} \quad \text { for all } z \in \mathbb{C}
$$

where A, B and k are fixed positive numbers, possibly depending on f but independent of z.
2. If f is analytic on an open set D, show that $\nabla(\operatorname{Re}(f))$ is obtained by rotating $\nabla(\operatorname{Im}(f))$ by 90°. Here ∇ denotes the two-dimensional gradient vector.
3. Let f be an analytic function on a open connected set D. In each of the two problems below, show that f is constant.
(a) The function \bar{f} is also analytic on D.
(b) $|f|$ is constant on D.
4. Determine which of the following functions are analytic and at which points of D :
(a) $f(z)=\operatorname{Re}(z), D=\mathbb{C}$;
(b) $f(z)=\operatorname{Im}(z), D=\mathbb{C}$;
(c) $f(z)=a z^{2}+b z \bar{z}+c \bar{z}^{2}$, where a, b, c are constants, $D=\mathbb{C}$;
(d) $f(z)=\sin x \sinh y+i \cos x \cosh y, D=\mathbb{C}$;
(e)

$$
H(z)=\int_{0}^{1} \frac{h(t)}{t-z}, \quad D=\mathbb{C} \backslash[0,1]
$$

where h is a continuous, complex-valued function on $[0,1]$.
5. (a) If $\gamma:[0,1] \rightarrow \mathbb{C}$ is a continuously differentiable closed curve and $a \notin \gamma[0,1]$, then show that the function

$$
n_{\gamma}(a)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{d z}{z-a}
$$

is holomorphic on $\mathbb{C} \backslash\{\gamma\}$, which is in fact integer-valued everywhere in its domain of definition.
(b) The quantity $n_{\gamma}(a)$ is called the index or winding number of γ with respect to the point a. Compute the winding number of $\gamma(t)=a+e^{2 \pi i n t}, t \in[0,1]$ with respect to a to convince yourself that the nomenclature is justified.
(c) Give an example of a closed curve γ in \mathbb{C} of finite length such that for any integer k there is a point $a \notin\{\gamma\}$ with $n_{\gamma}(a)=k$.
6. For any $\epsilon>0$, describe the set

$$
A_{\epsilon}=\left\{\omega: \omega=\exp \left(\frac{1}{z}\right), \quad 0<|z|<\epsilon\right\}
$$

and use it to deduce that A_{ϵ} is independent of ϵ.

